

UNIWERSYTET
ŁÓDZKI

Motivation

Understanding switching phenomena in titanium dioxide and graphene oxide

Connect people working on oxides with graphene community

Leon Chua
Memristor-The missing circuit element (1971)

Rainer Waser Nanoionics-based resistive switching memories (2007)

R. Stanley williams Memristor-The missing circuit element (2008)

UNIWERSYTET ŁÓDZKI

New types of memories

UNIWERSYTET
 ŁÓDZKI

Resistive switching

UNIWERSYTET ŁÓDZKI

Resistive switching

Chua, IEEE Trans. Circuit Theory (1971), 18, 507

UNIWERSYTET ŁÓDZKI

Resistive switching

Flow of current through an element changes its resistance

High resistance (OFF) and low resistance (ON) states are well distinguishable
Logical 0
Logical 1

Matrix composed out of such elements can be used as a memory (ReRAM)

Resistive switching

Profi Stan Wilams

Electronic devices comprising a Langmuir-Blodgett molecular monolayer sandwiched between planar platinum and titanium metal electrodes functioned as switches and tunable resistors over a $10^{2}-10^{5} \Omega$ range under current or voltage control. Reversible hysteretic switching and resistance tuning was qualitatively similar for three very different molecular species, indicating a generic switching mechanism dominated by electrode properties or electrode/molecule interfaces, rather than molecule-specific behavior.

[^0]
\checkmark UNIWERSYTET ŁÓDZKI
 Resistive switching

nature International weekly journal of science

The missing memristor found

D. Strukov, G. Snider, D. Stewart, , S. Williams

Nature (2008), 453, 80.

UNIWERSYTET ŁódZKı

Resistive switching

$$
\begin{aligned}
& U(t)=\left(R_{\text {ON }} \frac{w(t)}{D}+R_{\text {OFF }} \frac{D-w(t)}{D}\right) i(t) \\
& \frac{d w(t)}{d t}=v_{D}(t)=\mu E(t)=\mu \frac{U(t)}{w(t)}=\frac{\mu}{w(t)}\left(\frac{w(t)}{D} R_{O N} i(t)\right)=\mu \frac{R_{O N}}{D} i(t)
\end{aligned}
$$

D. Strukov, G. Snider, D. Stewart, S. Whiliams

Nature (2008), 453, 80.

UNIWERSYTET ŁÓDZKI
 Resistive switching

Problems to solve

$$
\begin{gathered}
U=M(q) \cdot i \\
M(q)=R_{O F F}\left(1-\frac{\mu R_{O N}}{D^{2}} q(t)\right)
\end{gathered}
$$

Whether electric current can change chemical stoichiometry ?

Titanium dioxide THO_{2}

TH_{2} as a model material for memristive studies

Rutile $\mathbf{T H O}_{2}$

UNIWERSYTET ŁÓDZKI

STM/STS - Tersoff-Hamann theory

Tip wave function

$$
\Psi_{\mu}=\frac{1}{\sqrt{\Omega}_{T}} c_{T} \cdot \kappa \cdot R \cdot e^{\kappa \cdot R} \frac{1}{\kappa\left|\vec{r}-\vec{r}_{0}\right|} e^{-\kappa|\vec{r} \vec{\sigma}|}
$$

$$
\Psi_{v}=\frac{1}{\sqrt{\Omega}} \sum_{G} A_{G} e^{-2 \sqrt{k^{2}+\left.\vec{k}_{\sigma}\right|^{2}}} e^{\left(i \vec{K}_{\sigma} \cdot \vec{x}\right)}
$$

$$
M_{\mu, \nu}=\frac{h^{2}}{2 m} \int\left(\Psi_{\mu}^{*} \nabla \Psi_{\nu}-\Psi_{\nu} \nabla \Psi_{\mu}^{*}\right) d S \quad I=\left.\frac{2 \pi e}{h} \sum_{\mu, \nu} f\left(E_{\mu}\right)\left[1-f\left(E_{v}+e V\right)\right] M_{\mu, \nu}\right|^{2} \delta\left(E_{\mu}-E_{v}\right)
$$

Tunnelling current expression

$$
I \propto \sum_{v}\left|\Psi_{v}(\vec{r})\right|^{2} \delta\left(E_{v}-E_{F}\right) \equiv \rho\left(\vec{r}, E_{F}\right)
$$

$\mathrm{THO}_{2}(110)-(1 \times 1) \&(1 \times 2)$

UNIWERSYTET ŁÓDZKI
 Electronic structure of $\mathbf{T O}_{\mathbf{2}}$

$$
\mathrm{Ti}^{4+}->\mathrm{Ti}^{3+} \quad \text { i.e. } \quad \mathrm{TiO}_{2}->\mathrm{Ti}_{2} \mathrm{O}_{3}
$$

K. E. Smith, V. E. Heinrich, Phys. Rev. B. 38, 5965, (1988).
H. Nakatsugawa, E. Iguchi, Phys. Rev, B. 56, 12931, (1997).
A.I. Poteryaev, A.I. Lichtenstein, G. Kotliar, Phys, Rev, Lett, 93, 86401-1, (2004).

UNIWERSYTET ŁобzkI
 $\mathrm{THO}_{2}(110)-(1 \times 1) \&(1 \times 2)$

Scanning Tunneling Spectroscopy

UNIWERSYTET ŁÓDZKI

Electronic structure heterogeneity

Influence of STM tip onTHO 2

$300 \times 300 \mathrm{~nm}^{2}$ STM image of TiO_{2} (110) surface showing $150 \times 150 \mathrm{~nm}^{2}$ modification

LDOS map showing alifferent electronic structure of intact and modified areas

STM/STS $\mathrm{THO}_{2}(100)$ $(1 \times 3) /(1 \times 7)$

Z. Klusek, A. Busiakiewicz, P.K. Datta, Surf. Sci. 600, pp. 1619-1623, (2006).
Z. Klusek, A. Busiakiewicz, P.K. Datta, et al. Surf. Sci. 601, pp. 1513-1520, (2007).

STM topography - $68 \mathrm{~nm} \times 68 \mathrm{~nm}$

Heating $T=1070 K, t=7-15 \mathrm{~h}$

UNIWERSYTET $\mathrm{TIO}_{2}(\mathbf{1 0 0})-(\mathbf{1} \times 7)$ reconstruction CITS results tónzKI

Z. Klusek, A. Busiakiewicz, P.K. Datta, Surfi. Sci. 600, pp. 1619-1623, (2006).
Z. Klusek, A. Busiakiewicz, P.K. Datta, et al, surf, Sci, 601, pp. 1513-1520, (2007).
$\mathrm{TiO}_{2}(100)-(1 \times 7)$

LDOS map

LDOS curves

STM/STS $\mathrm{THO}_{2}(001)$

$100 \mathrm{~nm} \times 100 \mathrm{~nm}$ STM image of the $\mathrm{TH}_{2}(001)$ surface after sputtering.

STM, $150 \mathrm{~nm} \times 150 \mathrm{~nm}$ after 1173 K

STM, $20 \mathrm{~nm} \times 20 \mathrm{~nm}$

UNIWERSYTET ŁÓDZKI
 Influence of STM tip onTiO2(001)

$300 \times 300 \mathrm{~nm}^{2}$ STM image of THO_{2} (001) surface (Us=+2.8 V, I=0.1 nA) topography obtained before modification attempt

$300 \times 300 \mathrm{~nm}^{2}$ STM image of THO_{2} (001) surface (Us=+2.8 V,I=0.1 nA) after $150 \times 150 \mathrm{~nm}^{2}$ modification attempt (scanning parameterst
$\left.\boldsymbol{U}_{S}=+5.0 \mathrm{~V}, I=3.0 \mathrm{nA}\right)$

No significant STM induced changes on TiO_{2} (001) surface were observed even for high bias voltages and big values of tunneling current.

Moalification stability

UNIWERSYTET ŁÓDZKI

STM versus LC-AFM

We do not observe hysteretic behavior on I/V curves

Topography in STM is strongly affected by LDOS The I/V is affected by LDOS: dII/dV is measure of LDOS

(7. $\begin{gathered}\text { unwersytet } \\ \text { toozkl } \\ \text { Resistive switching in } \mathbf{T H O}_{\mathbf{2}}(\mathbf{1 1 0})\end{gathered}$

6
 UNIWERSYTET tózzk1 Modification of THO_{2} by LC-AFM

This is the same region of surface

topography [nm]
resistance
current [nA]

UNIWERSYTET ŁÓDZKI
 Resistive switching in $\mathrm{TrO}_{2}(\mathbf{1 1 0})$

(a)

(b)

(c)

UNIWERSYTET ŁÓDZKI
 Resistive switching in $\mathrm{THO}_{2}(110)$

K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser Nanotechnology 22, 2540001 (2011). M. Rogala, Z. Klusek, K. Szot, Appl, Phys, Lett, (2013).

UNIWERSYTET ŁÓDZKI
 Graphene

Physics of graphene

Electron properties

$H=v\left(\begin{array}{cc}0 & p_{x}-i p_{y} \\ p_{x}+i p_{y} & 0\end{array}\right)=v\left(\begin{array}{ll}0 & \pi^{+} \\ \pi & 0\end{array}\right)=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)=v \vec{\sigma} \cdot \vec{p}$

Optical properties

$$
\begin{aligned}
& E(\vec{k}, \Omega)=E_{0} e^{i(\vec{k} \vec{r}-\Omega t)} \\
& H=v_{F} \sigma\left(\vec{p}-\frac{e}{c} \vec{A}\right) \\
& \vec{A}=\left(e v_{F} / i \Omega\right) \vec{E}_{0}
\end{aligned}
$$

$$
W_{i}=(c / 4 \pi)\left|\vec{E}_{0}\right|^{2}
$$

$$
\left.W_{a}=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{c}\right|\left(e v_{F} / i \Omega\right) \sigma \cdot \vec{E}_{0}\right| \Psi_{v}\right\rangle\left.\right|^{2} \times \rho(\hbar / 2) \times \hbar \Omega
$$

$$
W_{a}=\frac{e^{2}}{4 \hbar}\left|E_{0}\right|^{2}
$$

$$
\rho=(E / 2=\hbar / 2)=\hbar \Omega / \pi \hbar^{2} v_{F}^{2}
$$

$$
P=\frac{W_{a}}{W_{i}}=\frac{\pi e^{2}}{\hbar c}=\pi \alpha \quad T=(1+0.5 \pi \alpha)^{-2} \approx 1-\pi \alpha \approx 97.7 \%
$$

UNIWERSYTET ŁÓDZKI

Graphene and graphene derivatives

graphone

graphene oxide

Graphene and graphene derivatives

Graphene oxide - XPS results

Graphene and graphene derivatives

Reduced graphene oxide - XPS results

Resistive switching in GO

Teoh, et al., APL 98, 173105 (2011)

Thickness of GO film: 20-100 nm

600 nm

(.) uniwersyter Resistive switching in $\mathbf{G O}$

GO reduction -> rGO

ambient

4. uniwersytet Resistive switching in GO

!
 UNIVERSytet Resistive switching in GO

Resistive switching - TiO_{2}

UHV

Resistive switching - 60

ambient

3
 UNIWERSYTET ŁóDZKI
 Resistive switching in GO

T. $\begin{gathered}\text { uniwersytet } \\ \text { toozki } \\ \text { Resistive switching in } \mathbf{G O}\end{gathered}$

UHV O_{2}

topography conductivity

T. $\begin{aligned} & \text { uniwersytet } \\ & \text { tózki } \\ & \text { Resistive switching in } \mathbf{G O}\end{aligned}$

UHV $\mathrm{O}_{2} \quad \mathrm{~N}_{2} \quad \mathrm{CO}_{2}$

U uniwersytet tódzki
 GO reduction -> rGO

Modification area increase as a function of increasing humidity

man ŁÓDZKI

GO reduction -> rGO

UNIWERSYTET ŁÓDZKI
 GO reduction -> rGO

Hixive

Weeks et al; Langmuir
218096 (2005)
Weeks et al.; Langmuir
218096 (2005)

$$
2 \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{GO}+\mathrm{H}_{3} \mathrm{O}^{+}+e^{-} \rightarrow r \mathrm{GO}
$$

UNIWERSYTET Resistive switching model in GO

- RS - restricted to $\mathrm{GO} / \mathrm{H}_{2} \mathrm{O}$ interface
- Negatively biased tip starts reduction proces
- e^{-}are transfered to GO in $\mathrm{H}_{2} \mathrm{O}$
- reduced GO - new electrode
- Possible role of $\mathrm{H}+$ ions
- $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+4 e^{-}+\mathrm{O}_{2}$
$\square \mathrm{GO}+a \mathrm{H}^{+}+b e^{-} \rightarrow r G O+c \mathrm{H}_{2} \mathrm{O}$

Rogala et al., Appl. Phys. Lett. 106263104 (2015)

UNIWERSYTET ŁÓDZKI

GO reduction -> rGO

XPS

Typical modification size $0.5 \times 0.5 \mu \mathrm{~m}^{2}$

$40 \times 40 \mu m^{2}$

UNIWERSYTET ŁÓDZKI
 Resistive switching

PROBLEMS

- GO is modified during standard experiments
- Literature dose not give coherent description of method of chemical composition measurement in the case of GO

3
 UNIWERSYTET tónzki Influence of of measurements on ...

UNIWERSYTET ŁÓDZKI
 Ink-Jet printing

GO on PET

UNIWERSYTET Flexible resistive switching devices tódZKı

Uniwersytet Flexible resistive switching devices Łódzki

Cross-bar structure

I R.GOBUK_Ut

Capacitor structure

θ | P Owerly Memrystor_I G0/ Uk 2013.10 KOLOR AI

ϕ

Cross-bar structure

Badanie zależności I(V) GP0057_2_G3

Badanie zależności I(V) GP0057_2_G4

Conclusions

Understanding of basic properties of resistive switching in titanium dioxide and graphene oxide

towards application

\longleftarrow
 UNIWERSYTET ŁÓDZKI
 Projects

[^0]: D.R. Stewart, D. Ohlberg, P. Beck, Y. Chen, S. Wiliams at al. Nano Letters (2004), 4, 133

