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A self-consistent thermodynamic model of metallic system is presented. The expression for the

Gibbs energy is derived, which incorporates elastic (static) energy, vibrational energy within the

Debye model, and electronic part in Hartee-Fock approximation. The elastic energy is introduced

by a volume-dependent anharmonic potential. From the Gibbs energy all thermodynamic quanti-

ties, as well as the equation of state, are self-consistently obtained. The model is applied for the

description of bulk gold in temperature range 0� T � 1300 K and external pressure up to 30 GPa.

The calculated thermodynamic properties are illustrated in figures and show satisfactory agreement

with experimental data. The advantages and opportunities for further development of the method

are discussed. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891251]

I. INTRODUCTION

The properties of noble metals and, in particular, of gold

have intensively been studied, both experimentally1–18 and

theoretically.19–40 The studies of gold are connected with its

many technical applications, for instance, as a protective

coating material, in electronics, as well as in metrology and

medicine. For instance, gold provides an accurate pressure

calibration for experiments conducted at high temperatures

and pressures.13,16,17,23,38,40 In recent years, gold nanopar-

ticles attracted much attention as a class of multifunctional

materials for biomedical application.41–43

As far as the experimental studies of gold are concerned,

they include equation of state as well as the lattice and ther-

modynamic properties, both in low-temperature regime3–5,8

and in high temperatures and pressures as well.1,2,7,16–18,36

At the same time, the thermodynamic and vibrational proper-

ties have been studied by the theoretical methods, including

specific heat calculations,20,26 phonon dispersion rela-

tion,10,35 interatomic interaction and density of states,25

Debye temperatures,21,26 Gr€uneisen parameter,19 lattice con-

stants,36,37 and equation of state.14,23,24,28–33 The theoretical

methods include studies of anisotropic-continuum model,19

classical Mie-Gr€uneisen approach and Birch-Murnaghan

equation of state,14,17 pseudopotential25 and embedded-

atom35 models, quasiharmonic19 and anharmomic21

approach, as well as first principles28–31 and density func-

tional theory37 calculations.

Most of the methods mentioned above are very special-

ized and aimed at characterizing only some of thermody-

namic properties, for instance, equation of state, but not at

obtaining a full and self-consistent thermodynamic descrip-

tion. Only in few papers an attempt has been made to

construct the full thermodynamic description based on the

expression for the free energy. The thermodynamic potential

considered there contains the elastic (static) energy, vibra-

tional energy, as well as the electronic contribution.27,31 In

this context, it is worth mentioning that recently the compu-

tational method for the Gibbs energy has been presented,

which is suitable for solids under the quasi-harmonic approx-

imation.44 In all these papers the electronic energy is taken

in the simplest (Sommerfeld) approximation, and the vibra-

tional energy is calculated from the Debye model in quasi-

harmonic approximation. On the other hand, the elastic

(static) energy calculations involve more elaborate methods,

based on the density functional theory (DFT).

We are aware that DFT methods are not always accessi-

ble (and convenient) since they require specialized software

and sufficient computational resources. Therefore, apart

from referring to such methods it is useful to have also the

analytical description of the system in question. Such

description should be based on the Gibbs energy, so giving

correct thermodynamic relationships, and being uncompli-

cated enough for practical use. In particular, the analytical

form of equation of state (EOS) is very useful for under-

standing mutual relations between physical parameters, as

well as contributions to the total pressure from various

energy components. Such EOS should be obtained by

demanding minimization of the Gibbs energy functional

whereas the system is in equilibrium.

Taking the above needs into account, in the present

paper we developed a simple approach, based on the deriva-

tion of the Gibbs energy, which yields self-consistent ther-

modynamic description of metallic system using analytical

solutions. The Gibbs energy consists of Helmholtz free-

energy and grand potential (pV) term. In turn, the Helmholtz

free-energy is constructed from the elastic (static) energy,

vibrational energy, and electronic part. The elastic energy is

described by the method presented in Ref. 45, which is based

on the expansion of anharmonic potential in the power series

with respect to the volume deformation. The vibrational
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energy is taken within the Debye model in the analytical

approximation, which has been extended for high tempera-

tures. In turn, the electronic energy, apart from the kinetic

(Sommerfeld) term, has been completed by the ground state

energy, as well as by the exchange energy in Hartree-Fock

approximation. From the Gibbs energy the full thermody-

namic description is obtained and presented in a form of

analytical expressions. In particular, new EOS has been

found for arbitrary temperature T and external pressure p.

However, the price for the simplicity of the method is that

some of initial parameters, defined for p¼ 0 and T¼ 0,

should be taken from experimental data.

The formalism has been presented in Sec. II in detail

and then applied for bulk gold in Sec. III. The numerical

calculations have been performed in the range of tempera-

tures from 0 K up to the melting point, and external pressure

up to 30 GPa. The calculated thermodynamic properties, for

instance, specific heat, compressibility and thermal expan-

sion, have been presented in figures and compared with

experimental data. Some advantages and weak points of the

method have been discussed.

II. THEORETICAL MODEL

A. General formulation

The Gibbs free energy of a metallic system is assumed

in the form of

G ¼ Fe þ FD þ Fel þ pV; (1)

where Fe is the elastic energy without lattice vibrations, FD

is the vibrational energy in Debye approximation, and Fel is

the energy of electronic subsystem. The elastic energy can

be presented in a form of a power series

Fe ¼ N Aeþ 1

2
Be2 þ 1

3!
Ce3 þ 1

4!
De4 þ 1

5!
Ee5 þ � � �

� �
; (2)

where e is a parameter characterizing volume deformation,

A, B, C,… are the coefficients and N is the number of atoms

in the lattice. The volume deformation is defined by

V¼V0(1þ e), where V0 is the volume at absolute zero tem-

perature (T¼ 0) and in vacuum conditions (p¼ 0). This

energy is a source of static pressure

pe ¼ �
@Fe

@V

� �
T

¼ � N

V0

Aþ Beþ 1

2
Ce2 þ 1

3!
De3 þ 1

4!
Ee4 þ � � �

� �
: (3)

The vibrational energy is taken in the Debye approximation46

FD ¼ N
9

8
kBTD þ 9kBT

T

TD

� �3 ðyD

0

y2ln 1� e�yð Þdy

" #
; (4)

where

yD ¼ TD=T (5)

and TD is the Debye temperature. Equation (4) can be trans-

formed into a more convenient form

FD¼N
9

8
kBTDþ3kBTln 1�e�yDð Þ�3kBT

1

y3
D

ðyD

0

y3

ey�1
dy

" #
:

(6)

In further considerations, we introduce the lattice Gr€uneisen

parameter cD in the following way:47,48

cD ¼ c0
DðV=V0Þq ¼ c0

Dð1þ eÞq; (7)

where q is a constant parameter. The Debye temperature

TD is connected with the Gr€uneisen parameter by the

relationship36

TD ¼ T0
Deðc

0
D
�cDÞ=q gðTÞ ¼ T0

D f ðeÞ gðTÞ; (8)

where

f ðeÞ ¼ eðc
0
D
�cDÞ=q ¼ ec0

D
½1�ð1þeÞq�=q: (9)

T0
D and c0

D are the Debye temperature and Gr€uneisen parame-

ter, respectively, which are taken at T¼ 0 and p¼ 0. In

Eq. (8), we introduced g(T) function which weakly depends

on temperature and will be specified latter. This function

reflects the fact that the Debye temperature depends not only

on the volume, but also on temperature itself. It takes into

account the so-called “intrinsic anharmonicity” which leads

to higher order terms in thermodynamic functions and has

also been discussed in several papers.49–53

It can be easily checked that the above relationship for

TD satisfies the classical Gr€uneisen assumption54,55

cD ¼ �
V

xD

@xD

@V

� �
T

¼ � V

TD

@TD

@V

� �
T

: (10)

In the low temperature approximation, yD ! 1 and we can

make use of the integral:
Ð1

0
y3=ðey � 1Þdy ¼ p4=15. Thus,

Eq. (6) can be transformed to the form

FD ¼ N
9

8
kBTD �

1

5
p4kBT

T

TD

� �3
" #

: (11)

The above energy gives the vibrational pressure for low

temperatures

pD¼�
@FD

@V

� �
T

¼3
N

V0

kBTDcD

3

8
þ1

5
p4 T

TD

� �4
" #

1

1þe
; (12)

where TD is given by Eq. (8), and (@TD /@V)T is expressed on

the basis of Eq. (10).

On the other hand, for high temperatures, in Eq. (6) we

can make use of the following series expansion:

y

ey � 1
¼
X1
k¼0

Bk
yk

k!
; (13)

where Bk are the Bernoulli numbers: B0 ¼ 1; B1 ¼ � 1
2
;

B2 ¼ 1
6
; B3 ¼ 0; B4 ¼ � 1

30
; B5 ¼ 0; B6 ¼ 1

42
; B7 ¼ 0;

B8 ¼ � 1
30
; B9 ¼ 0; B10 ¼ 5

66
; B11 ¼ 0; B12 ¼ � 691

2730
, etc.

This expansion enables us to calculate the integral in the

form of a series
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ðyD

0

y3

ey � 1
dy ¼

X1
k¼0

Bk

k!

ykþ3
D

k þ 3
: (14)

For sufficiently high temperatures, when yD is small and sat-

isfies the condition: T > 1
2p TD � 0:16 TD, the series is con-

vergent.56 We found that for practical applications, it is

sufficient to include in the series only the terms up to fourth

order. Thus, using the high temperature expansion, the vibra-

tional free energy is given by

FD ¼N
9

8
kBTDþ 3kBT ln 1� e�yDð Þ

�

�3kBT
1

3
B0þ

1

4
B1yDþ

1

10
B2y2

Dþ
1

168
B4y4

D

� ��
: (15)

Such energy gives the following vibrational pressure for

high temperatures:

pD ¼
N

V0

kBTDcD

3

2
tanh�1 yD=2ð Þ � 1

10
1� 1

42
y2

D

� �
yD

� �
1

1þ e
:

(16)

It is worth mentioning that without the second term in the

square bracket of Eq. (16), the remaining tanh�1 function

reproduces the pressure of oscillators in the Einstein model45

with rescaled temperature (TD!H, with H being the

Einstein characteristic temperature).

The electronic free energy Fel in Eq. (1) can be pre-

sented in approximate form as

Fel ¼ Ne �Cex

ffiffiffiffiffiffi
EF

p
þ 3

5
EF �

p2

4

1

EF

kBTð Þ2
� �

; (17)

where Ne is the number of electrons and EF is the Fermi

energy, while the exchange constant Cex is equal to

Cex ¼
3

2p
e2

4p�0

ffiffiffiffiffiffi
2m
p

�h
: (18)

The first term in Eq. (17) corresponds to the exchange energy

in the Hartree-Fock approximation.57 The second term is the

kinetic energy for T¼ 0, and the last term describes kinetic

energy in the low-temperature region, where T� TF¼EF/kB,

TF denoting the Fermi temperature. The Fermi energy can be

presented as a function of the volume,

EF ¼ E0
F

1

1þ eð ÞcF
; (19)

where

E0
F ¼

�h2

2m
3p2 Ne

V0

� �2=3

(20)

is the Fermi energy at T¼ 0 and p¼ 0. In analogy to the

Gr€uneisen assumption for the lattice parameter (see Eq. (10)),

cF-exponent satisfies the equation,

cF ¼ �
V

EF

@EF

@V

� �
T

: (21)

In this paper, we assume that cF is a constant parameter (con-

trary to cD, which is volume dependent). This parameter can

be related to the so-called electronic Gr€uneisen parameter ce

defined by the formula9

ce ¼ �
@ ln DOS EFð Þ

@ ln V

� �
T
; (22)

where DOS(EF) is the density of states at Fermi surface.

From Eqs. (21) and (22), one can obtain the relationship

ce ¼ 1� cF

2
: (23)

For cF¼ 2/3, which is the free-electron case, we obtain

ce¼ cF.

From the expression (17), the electronic part of the pres-

sure can be found as

pel¼�
@Fel

@V

� �
T

¼Ne

V0

cF �
1

2
Cex

ffiffiffiffiffiffi
EF

p
þ3

5
EFþ

p2

4

1

EF

kBTð Þ2
� �

1

1þ e
; (24)

which is valid for T� TF. Under the external pressure p, the

equation of state follows from the equilibrium condition:

p ¼ pe þ pD þ pel; (25)

where pe is given by Eq. (3), pel - by Eq. (24), and pD is given

for the low or high temperature regions by Eqs. (12) or (16),

respectively.

B. The Gr€uneisen relationship

For the systems described by (p, V, T)-variables, we can

make use of the exact thermodynamic relationship,

ap

jT
¼ @p

@T

� �
V

; (26)

where ap is the thermal volume expansion coefficient

ap ¼
1

V

@V

@T

� �
p

(27)

and jT is the isothermal compressibility,

jT ¼ �
1

V

@V

@p

� �
T

: (28)

For pressure given in the form of Eq. (25), the temperature

partial derivatives can be calculated as follows:

@pe

@T

� �
V

¼ 0; (29)

@pD

@T

� �
V

¼ cD

CD
V

V
; (30)

where CD
V is the phononic heat capacity, and

@pel

@T

� �
V

¼ cF

Cel
V

V
; (31)
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where Cel
V is the electronic heat capacity. The phononic heat

capacity at constant volume for low temperatures (T � TD)

can be found from the relationship

CD
V¼�T

@2FD

@T2

� �
V

¼12

5
p4NkB

T

TD

� �3

w Tð Þ�9NkBTD

1

8
þp4

15

T

TD

� �4
" #

� T

g Tð Þ
@2g Tð Þ
@T2

; (32)

where FD is taken from Eq. (11). The new function w(T) is

defined by

w Tð Þ ¼ 1� T

g Tð Þ
@g Tð Þ
@T

" #2

: (33)

On the other hand, for the high temperature region we have

on the basis of Eq. (15)

CD
V ¼ 3NkB

TD

T

� �2
eTD=T

eTD=T � 1ð Þ2
þ 1

30
� 1

420

TD

T

� �2
" #

w Tð Þ

�3NkBTD

1

eTD=T � 1
þ 1

2
� 1

30

TD

T
þ 1

1260

TD

T

� �3
" #

� T

g Tð Þ
@2g Tð Þ
@T2

: ð34Þ

In further calculations, we will assume that g(T) function only

weakly depends on temperature and has the simple linear form:

g Tð Þ ¼ 1þ r
T

T0
D

; (35)

where r is a constant parameter (r� 1) over the whole tem-

perature region. Then, in right-hand side of Eqs. (32) and

(34) the second terms containing @2g(T)/@T2 vanish, whereas

in the first terms w(T) takes the form of

w Tð Þ ¼ 1� rT=T0
D

1þ rT=T0
D

 !2

: (36)

We see that w(T) function for r> 0 can enforce some decrease

of the specific heat vs. temperature in comparison with the

case when g(T)¼ const. We found that such a possibility can

be useful in order to reproduce better the experimental data.

The electronic heat capacity at constant volume is given

by the formula

Cel
V ¼ �T

@2Fel

@T2

� �
V
¼ Ne

p2

2

1

EF

k2
BT; (37)

which is valid for low temperatures (T � TF) in the elec-

tronic scale.

Substituting the pressure derivatives (Eqs. (29)–(31)) into

Eq. (26), we obtain the Gr€uneisen relationship for complex

(phononic and electronic) system which can be presented as

ap

jT
¼ cDCD

V þ cFCel
V

V
¼ ceff

V
CV ; (38)

where

CV ¼ CD
V þ Cel

V ; (39)

and

ceff ¼ cDCD
V þ cFCel

V

CD
V þ Cel

V

: (40)

Therefore, ceff is the effective Gr€uneisen parameter for the

electronic and phononic complex system.

C. The dimensionless EOS

Equation of state (25) can be presented in a dimension-

less form which is convenient for numerical calculations.

First, we introduce the reference energy A0
D for normalization

of various energy coefficients. We define

A0
D ¼ kBT0

D; (41)

where T0
D is the Debye temperature at 0 K. Then, we can

introduce the dimensionless pressure

~p ¼ V0

N

1

A0
D

p (42)

and dimensionless temperature,

~T ¼ T

T0
D

: (43)

By the same token, the elastic constants can be normalised

as follows:

~A ¼ A

A0
D

; ~B ¼ B

A0
D

; ~C ¼ C

A0
D

; ~D ¼ D

A0
D

; ~E ¼ E

A0
D

: (44)

Similarly, the dimensionless Fermi and exchange energies

can be written as

~E0
F ¼

E0
F

A0
D

(45)

and

~E0
ex ¼ �

Cex

ffiffiffiffiffiffi
E0

F

p
A0

D

; (46)

respectively.

With the above notation, the equation of state (Eq. (25))

in the low temperature limit can be presented in the dimen-

sionless form

~p þ ~A þ ~Beþ 1

2
~Ce2 þ 1

3!
~De3 þ 1

4!
~Ee4

¼ 3cDf eð Þg Tð Þ 3

8
þ 1

5
p4

~T

f eð Þg Tð Þ

 !4
2
4

3
5 1

1þ e

þNe

N
cF

1

2
~E0
ex

1

1þ eð ÞcF=2
þ 3

5
~E0
F

1

1þ eð ÞcF

"

þ p2

4

~T
2

~E0
F

1þ eð ÞcF

#
1

1þ e
: (47)
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From the equilibrium condition for ~T ¼ 0 and ~p ¼ 0, we

must have e¼ 0. This condition allows to determine the
~A-coefficient, namely,

~A ¼ 9

8
c0

D þ
Ne

N
cF

1

2
~E0
ex þ

3

5
~E0
F

� �
: (48)

Now, substituting Eq. (48) into (47), we finally obtain the

equation of state in the low temperature region as

~p þ 9

8
c0

D þ ~Beþ 1

2
~Ce2 þ 1

3!
~De3 þ 1

4!
~Ee4

þ 1

2

Ne

N
cF

~E0
ex 1� 1

1þ eð ÞcF=2þ1

" #

¼ 3cD f eð Þg Tð Þ 3

8
þ 1

5
p4

~T

f eð Þg Tð Þ

 !4
2
4

3
5 1

1þ e

þ 3

5

Ne

N
cF

~E0
F

1

1þ eð ÞcFþ1
� 1

" #
þNe

N

p2

4
cF

~T
2

~E0
F

1þ eð ÞcF�1
:

(49)

When T ! 0, this equation can be linearized with respect

to e. Then, by comparison with the approximate formula

e � �j0
NA0

D

V0
~p, which is valid in the limit T! 0, the ~B coef-

ficient can be determined,

~B ¼ V0

N

1

A0
Dj0

� 9

8
c0

D c0
D � qþ 1

	 

� 3

5
cF cF þ 1ð ÞNe

N
~E0
F �

1

2
cF

cF

2
þ 1

� �
Ne

N
~E0
ex ; (50)

where j0 is the isothermal compressibility at T¼ 0 and

p¼ 0. All parameters necessary to calculate ~B from Eq. (50)

can be taken from experimental data.

In the high temperature region, the vibrational pressure

pD should be taken from Eq. (16) instead of Eq. (12). This

leads to the dimensionless EOS for high temperatures,

~pþ 9

8
c0

Dþ ~Beþ 1

2
~Ce2þ 1

3!
~De3þ 1

4!
~Ee4

þ 1

2

Ne

N
cF

~E0
ex 1� 1

1þ eð ÞcF=2þ1

" #

¼ cD f eð Þg Tð Þ
1þ e

3

2
tanh�1 f eð Þg Tð Þ

2 ~T

� �
� 1

10

f eð Þg Tð Þ
~T

�

þ 1

420

f eð Þg Tð Þ
~T

� �3
#
þ3

5

Ne

N
cF

~E0
F

1

1þ eð ÞcFþ1
� 1

" #

þNe

N

p2

4
cF

~T
2

~E0
F

1þ eð ÞcF�1
: (51)

By comparison of the Eqs. (51) and (49), one can see that

only the phononic part on the right-hand side of these equa-

tion has been modified.

D. Calculation of other thermodynamic quantities

From the equation of state, the isotherms (e(p) for

T¼ const.) or isobars (e(T) for p¼ const.) can be found

directly. Other thermodynamic properties result from differ-

entiation of the equation of state. For instance, the thermal

volume expansion coefficient ap is given by Eq. (27),

whereas the isothermal compressibility jT is given by

Eq. (28).

The adiabatic compressibility is measured in the experi-

ment. It is given by the definition

jS ¼ �
1

V

@V

@p

� �
S

(52)

where the partial derivative is taken at constant entropy S,

where S¼�(@G/@T)p.

In turn, the heat capacity at constant pressure is defined

as

Cp ¼ �T
@2G

@T2

� �
p
: (53)

Having calculated ap, jT ,and CV on the basis of EOS, the

quantities defined above (jS and Cp) can be conveniently

obtained from the exact thermodynamic relationships

jS ¼ jT

�
1þ TV

a2
p

CVjT

 !
(54)

and

Cp ¼ CV 1þ TV
a2

p

CVjT

 !
: (55)

With the help of the generalized Gr€uneisen relationship (Eq.

(38)), the above formulas can also be presented in a more el-

egant form:

jS ¼ jT=ð1þ Tapc
effÞ (56)

and

Cp ¼ CVð1þ Tapc
effÞ; (57)

where the effective Gr€uneisen parameter ceff is defined by

Eq. (40).

It is worth mentioning that using the above equations

the exact thermodynamic identity

Cp

CV
¼ jT

jS
(58)

remains fulfilled.

In order to illustrate the method, some exemplary nu-

merical calculations based on the proposed formalism will

be presented in Sec. III.

III. NUMERICAL RESULTS AND DISCUSSION

As an application of the theory presented in Sec. II, we

shall describe thermodynamic properties of bulk gold. For

such metallic system, many experimental results are avail-

able which can be compared with calculations performed
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within the present model. Some of the experimental data at

0 K can serve as the input parameters for present formalism.

For instance, the Debye temperature at 0 K amounts to

T0
D ¼ 164 K.3 On this basis we can calculate the reference

energy A0
D (see Eq. (41)), namely A0

D ¼ 2:264� 10�21 J.

Another parameter is the atomic volume at 0 K, V0/N
¼ 1.677� 10�29 m3, which is estimated from Ref. 8. The

isothermal compressibility at 0 K can be calculated as the

inverse of the bulk modulus. On the basis of Refs. 1 and 8,

we obtained the value j0¼ 5.546� 10�12 Pa�1. As far as the

Gr€uneisen coefficient is concerned, we assumed the value of

c0
D ¼ 2:95, which is an average value from the data reported

in Refs. 9 and 8. Then, the parameter q is assumed as

q¼ 0.8, which is one of the possible values considered in

Ref. 36. Regarding electronic properties, we assumed that

the parameter cF¼ 2/3¼ const. in the whole temperature

region, which corresponds to the free electron model. The

electron density per atom is equal to Ne/N¼ 1. Taking into

account the above input data, we calculated the normalized

Fermi energy at 0 K as ~E0
F ¼ 394 and the exchange energy

~E0
ex ¼ �105. Moreover, the ~B-parameter can be calculated

on the basis of Eq. (50), and yields the value ~B ¼ 1109:5.

Other theoretical parameters, which are necessary for

further calculations, are connected with the coefficients in

the expression for the elastic energy (Eq. (2)). They are

treated as the fitting parameters in our theory. We found that

the best fit is obtained for the following set of coefficients:
~C ¼ �8000; ~D ¼ 200 000; ~E ¼ 1 100 000 for e< 0, and
~C ¼ �9000; ~D ¼ 5000; ~E ¼ 900 000 for e> 0. These coef-

ficients reflect the asymmetry of the elastic energy with

respect to the sign of deformation e. Finally, the r-coefficient

in g(T)—function (defined by Eq. (35)) is assumed as:

r¼ 0.0025. Having the above set of starting parameters, all

thermodynamic properties can be calculated for arbitrary

T> 0 and p> 0. For the gold crystal, we explored the tem-

perature range 0�T< TM, where TM is the melting tempera-

ture, and the pressure p was from the range up to several tens

of GPa.

We start our calculations with the low-temperature

region. In particular, for T¼ 0, on the basis of EOS the vol-

ume dependence vs. pressure can easily be obtained. Hence,

the lattice constant a vs. p can be calculated. The result is

presented in Fig. 1. We see from that figure that the present

result fits well DFT (LDA) calculations.37 It also agrees with

the experimental point for p¼ 0 and T¼ 0, namely

a0¼ 4.06 Å.8 It is worth mentioning that the slope of the

curve at (p¼ 0, T¼ 0) can be related to the isothermal com-

pressibility j0 and well reproduces the experimental value

j0¼ 5.546� 10�12 Pa�1.8

In Fig. 2, the thermal volume expansivity of Au, ap is

plotted vs. T in the low-temperature region. The results

are compared with the experimental data which have been

averaged from two sources: Refs. 9 and 8. An excellent

agreement of numerical results with the experimental points

is seen.

In Fig. 3, the specific heat at constant pressure is pre-

sented vs. temperature in the same low-temperature region

(T�0:1 T0
D). The present result is compared with the experi-

mental data from Ref. 5. We also present there the results of

calculations based on the semi-empirical formula: Cp(T)

¼ 0.729� Tþ 0.4504� T3� 0.00048� T5. This formula has

been found in Ref. 4 and reflects the anomalous behaviour of

the specific heat (i.e., the negative coefficient at 	 T5 term)

in very low temperature region. From Fig. 3, one can con-

clude that the agreement of the theoretical results with the

experimental data is very satisfactory. In this figure, by the

diamond symbols the electron contribution to the calculated

specific heat is also shown. This contribution is very small in

the range of intermediate temperatures, however, it exceeds

the phononic specific heat in the extremely low temperature

region, namely when T� 1.2 K (at T¼ 1.2 K, Cel
V ¼ CD

V

� 7:6� 10�4J=mole K). On the other hand, at T¼ 16 K the

electron contribution constitutes only 0.56% of the total spe-

cific heat. Due to linear increase vs. temperature the electron

fraction of the specific heat will increase again for very high

temperatures, where the phononic part tends to saturate.

All calculations in the low-temperature region have

been done on the basis of EOS in the form of Eq. (49). For

higher temperatures, when T � 0:16 T0
D, the appropriate EOS

is given by Eq. (51). Fig. 4 presents the thermal expansion

coefficient vs. T in the range of high temperatures, limited by

the melting temperature of bulk gold (TM� 1337 K for p¼ 0

(Ref. 58)). A comparison of calculations with the experimen-

tal data taken from Refs. 14 and 17 (after Ref. 12) is made.

FIG. 1. Lattice constant a vs. pressure for T¼ 0.

FIG. 2. Thermal volume expansivity of Au, ap, in low temperature region.
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One can see that present result fits well both sets of experi-

mental data, which have been obtained in different tempera-

ture regions. Moreover, for T ! TM, the calculated thermal

expansion coefficient shows better agreement with the exper-

imental data than, for instance, in Ref. 35.

Regarding compressibility, it should be said that in

low-temperature region (T � 16 K) it is almost constant

(jT� jS�j0) and therefore has not been presented.

Adiabatic compressibility vs. temperature in the high-

temperature region is shown in Fig. 5. The numerical results

are compared with the experimental data obtained in Refs. 1

and 17 (after Ref. 15). A satisfactory agreement between the

present theory and experiment can be noted, although near

the melting point some differences are more noticeable. The

same remark can be made in Fig. 6, where the specific heat,

Cp, is presented vs. temperature. In this case the numerical

results are compared with the experimental data taken from

Refs. 14 and 17 (after Ref. 11). One can see that the agree-

ment between theory and experiment is worse for the highest

temperatures, although the difference does not exceed �3%.

In particular, for T ! TM, the calculated specific heat is

slightly higher than the experimental one. The same tend-

ency has been observed in Ref. 17. The electron contribution

to the specific heat is too small to be presented in Fig. 6 as a

separate curve. For instance, at temperatures 100 K, 500 K,

1000 K, and 1300 K it amounts to �0.3%, 1.3%, 2.6%, and

3.5% of the total specific heat, respectively.

The isotherm curve, describing the volume deformation

vs. external pressure, is shown in Fig. 7. The constant tem-

perature amounts to T¼ 300 K. The numerical calculations

are compared with the experimental data which have been

re-calculated from lattice constant measurements.16 A non-

linear decrease of e vs. p can be noted, and the negative val-

ues of e correspond to volume compression. The positive

value of e for p¼ 0, e� 0.01, is connected with thermal

expansion in the temperature range from T¼ 0 K (where

e¼ 0) up to T¼ 300 K. For higher pressures, the calculations

become less accurate. The similar discrepancy between

theory and experiment for high pressures has been observed

in Ref. 39.

In the last figure (Fig. 8), the Debye temperature is plot-

ted as a function of two variables: pressure and temperature.

The calculations are based on Eq. (8), whereas e is calculated

from EOS as a function of p and T. For p¼ 0 and T¼ 0 the

Debye temperature starts from the value T0
D ¼ 164 K and

decreases when T increases. The dependence of TD on p is

FIG. 3. Specific heat of Au at constant pressure, Cp, in low temperature

region. By the diamond symbols the electron contribution to the specific

heat is shown.

FIG. 4. Thermal volume expansivity of Au, ap, vs. temperature (p¼ 0).

FIG. 5. Adiabatic compressibility of Au, jS, vs. temperature (ambient

pressure).

FIG. 6. Specific heat of Au at constant pressure, Cp, vs. temperature.
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just opposite; the increasing pressure causes increase of the

Debye temperature. Such a behaviour allows to deduce that

decrease of the Debye temperature can be obtained by

increasing the atomic volume. This conclusion is in agree-

ment with the experimental results of Ref. 18, where the

Debye temperature was calculated from Debye-Waller factor

by an X-ray diffraction method, and a similar dependence

has been reported. However, due to approximate expression

for the elastic energy, and specific form of Eq. (8), some of

details concerning the Debye temperature behaviour, like an

anomaly at low temperatures,10,20 have not been reproduced

in our calculations.

IV. SUMMARY AND FINAL CONCLUSIONS

In the paper, we developed the self-consistent model for

thermodynamic description of metallic systems. The idea

presented in Ref. 45, where the Einstein model was com-

bined with the elastic one, has been extended here for the

Debye approximation. What is more, the electronic subsys-

tem with its kinetic and exchange energy has been taken into

account. The electronic energy has been considered in better

approximation than in previous works.27,31 We have shown

that the ground state (Fermi) energy, as well as the exchange

energy, both of them being volume dependent, can contrib-

ute to the electronic pressure. The regions of low and high

temperatures are described by different EOS, however, the

whole temperature range 0�T< TM has been covered by

these equations. Contrary to Birch-Murnaghan equation of

state, which presents only an isothermal description,46 in our

EOS all of the variables (p, V, and T) are treated equiva-

lently. The numerical results have been obtained for gold

crystal showing satisfactory agreement with the experimental

data, as well as with some DFT calculations. The difference

between our results and the experimental data does not

exceed �3% for the best fit of theoretical parameters.

The greatest difference between the numerical results

and experiment turns out to be near the melting point. A pos-

sible source of such inaccuracy is the Debye approximation.

This approximation has been used for the sake of simplicity,

however, it is rather coarse for the real systems at high tem-

peratures. Another reason is that our starting point for the

series expansion of elastic energy with respect to e is (T¼ 0,

p¼ 0). Thus, our theory is most applicable around the

equilibrium point (p¼ 0, T¼ 0, and e¼ 0). For the case of

gold, it is quite far from the melting point. For instance,

in high-pressure equation of state (Birch-Murnaghan)

T0� 300 K and p0¼ 1 bar has been assumed as a reference

temperature and pressure point. In our case, expanding the

range of pressures up to some extreme values would require

higher order terms vs. e and new fitting parameters in the

elastic potential to be taken into account, as well as other

necessary improvements on the presented approach. For

instance, the assumption that the elastic coefficients B, C, D,

etc., are constants in the whole temperature and pressure

region is only an approximation. It has been shown that the

elastic coefficients of gold are, to some extent, pressure2 and

temperature1,34 dependent. For the above reasons, the appli-

cation of the method in its present form for the range of

extreme pressures would be, in our opinion, rather limited in

practice.

Similarly to other models leading to EOS, in our calcu-

lations we have used only a single variable e for description

of the volume elastic deformation. However, the approach

can be generalized for anisotropic deformations (also includ-

ing anisotropic external pressures). It should also be men-

tioned that our considerations are limited to the quasistatic

processes and the shock-wave experiments cannot be

described within this model.

In this paper, the numerical calculations have been per-

formed for the case of gold only. The analysis for another

metal can be done analogously, whereas the numerical calcu-

lations of all thermodynamic properties should be performed

simultaneously from one set of fitting parameters. Among

these parameters, there are characteristics of elastic potential

(C, D, E, etc.), as well as other parameters (q, r) which form

an unique set for a given metal. The best fitting of all curves

to the experimental data means in practice multiple and

time-consuming calculations. However, the numerical calcu-

lations and analysis of the properties for other metals is

beyond the scope of present paper, which is mainly devoted

to the detailed presentation of theoretical model.

In spite of the features mentioned above, in our opinion,

the presented model can be useful for thermodynamic

description of metallic systems. Its advantage follows from

the fact that all thermodynamic properties can be found on

FIG. 7. Isotherm of Au (volume deformation e vs. pressure p) for T¼ 300 K.

FIG. 8. Debye temperature TD as a function of pressure p and temperature T.
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the basis of one single expression: the Gibbs energy. Hence,

the self-consistency of the theory is preserved and all ther-

modynamic relationships (like Gr€uneisen equation) are

exactly fulfilled. As mentioned above, the model can be fur-

ther improved when the volume deformation e is treated as

anisotropic quantity. On the other hand, the vibrational

energy can be taken more accurately than in the Debye

approximation, for instance, by better modelling of the pho-

nonic dispersion relations and density of states. Also, the

electronic energy calculations would benefit from a more re-

alistic model of band structure. For further improvement of

the model, electron-phonon interaction might also be taken

into account. Of course, such improvements will make the

model more accurate, but, at the same time, more compli-

cated for the practical use.
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