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Abstract

The thermodynamics of a site-diluted ferromagnetic Heisenberg model for spin S = 1/2 with interaction anisotropy in

spin space is investigated. The study is aimed at presenting the magnetocaloric properties of such a model, including

the entropy and temperature changes in magnetization/demagnetization processes, generalized Grüneisen ratio as

well as the quantities characterizing the efficiency of magnetic cooling cycles. The results are obtained using Pair

Approximation (PA) method and extensively compared with the Molecular Field Approximation (MFA) calculations.

The importance of interaction anisotropy and site-dilution is discussed. The inadequacy of the MFA approach (even

on the qualitative level) is found for selected quantities, while PA provides the results which are consistent with the

experimentally observed behaviour.
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1. Introduction

The study of magnetocaloric effect has more than a century-long history, starting from the discovery of Warburg

[1]. Its application in achieving low temperatures by adiabatic demagnetization dates back to the works of Giauque

and Debye [2–4]. At present the effect has gained an immense applicational potential [5, 6], providing a hope for an

efficient and environmental-friendly refrigeration technique, which stimulates the experimental search for the optimal

materials as well as the studies of its thermodynamics [7–12].

The description of the magnetocaloric phenomena depends crucially on the knowledge of the magnetic entropy

of the system as a function of the temperature and external magnetic field. In practice, this requires knowledge of

complete thermodynamics of the system in question. However, the exact results are still available only for one-

dimensional magnetic models which are exactly soluble in external magnetic field (see for example [13]). Other

low-dimensional systems also attract attention [14–20]. On the other hand, the results for three-dimensional systems

appear to be of primary interest and importance. This motivates the studies of magnetocaloric properties of three-

dimensional models using the approximate methods for the thermodynamic description. Some studies focus on the

magnetocaloric properties in the vicinity of phase transition [21–25]. Another issue of interest is the existence of some

universal relations for characteristics of magnetocaloric effect [26–29].

The aim of the present paper is the study of magnetocaloric effect in a model spin-1/2 Heisenberg diluted ferro-

magnet with interaction anisotropy taken into account. The model makes it possible to discuss the differences which

can occur between the quantum Heisenberg and Ising model in the presence of dilution. For this purpose the Pair

Approximation (PA) method, developed in our previous works [30, 31], is used. This method incorporates spin-spin

correlations into thermodynamic description. The advantage of PA method over the classical molecular field approx-

imation (MFA) is emphasized. In particular, it is shown that some thermodynamic characteristics, to which applying

MFA leads to unphysical results, can be successfully coped with by means of PA.
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2. The model and thermodynamic description of the magnetocaloric effect

The site-diluted spin-1/2 Heisenberg-type ferromagnet with interaction anisotropy is described by the following

Hamiltonian:

H = −
∑

〈i, j〉

[

J⊥
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S x
i S x

j + S
y

i
S
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j

)

+ JzS
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The external magnetic field Hz is introduced by means of the Zeeman term proportional to H ≡ −gµBHz. The condi-

tion 0 ≤ J⊥ ≤ Jz is imposed on the exchange integrals between nearest-neighbours for z spin direction and for in-plane

spin direction, which implies that the anisotropy is of the Ising type. The particular choice of J⊥ = Jz corresponds

to the isotropic Heisenberg model, while the other limiting case, J⊥ = 0, describes the pure Ising model. The site-

dilution is conveniently described by means of the occupation-number operators, ξi = 0, 1, defined for each site of the

underlying crystalline lattice. For a random occupation their configurational averages yield 〈ξi〉r = p and
〈

ξiξ j

〉

r
= p2,

where p is the magnetic atoms concentration.

The thermodynamic description of the model is based on the Pair Approximation (PA), which has been discussed

in [30, 31]. As far as the magnetocaloric effect is concerned, the approach has not been exploited yet. For the purpose

of present application it is briefly outlined below.

The PA belongs to the cluster variational methods. It exploits the idea of single-site and pair density matrices

in the cumulant expansion technique up to the second order cumulants. It is worthwhile to mention that within this

technique the MFA is restricted to the first order cumulants only. The method allows the Gibbs energy calculation

from which all the thermodynamic properties can be self-consistently obtained. In case of randomly diluted system

the Gibbs energy should be averaged over configurations. The result for the averaged Gibbs potential per one lattice

site can be written in the form:
〈G〉r

N
=

zp2

2

(

G2 − 2
zp − 1

zp
G1

)

, (2)

where z is the coordination number depending on the crystallographic lattice. The single-site and pair Gibbs energies,

denoted by G1 and G2, respectively, are given by:

G1 = −kBT ln
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and

G2 = −kBT ln

{

2 exp

(

Jz

4kBT

)

cosh

[

(zp − 1) λ + H

kBT

]

+ 2 exp

(

−
Jz

4kBT

)

cosh

(

J⊥

2kBT

)}

. (4)

The value of the variational parameter λ follows from the minimum condition for the averaged Gibbs potential 〈G〉r
and, at the same time, ensures the consistency of magnetizations calculated form single-site and pair density matrices.

From this condition, λ is determined from the formula:

tanh
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The Curie temperature TC can be found when λ→ 0. As a result of linearization of (5) one obtains:

exp

(

Jz
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)
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. (6)
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Figure 1: Interpretation of a refrigeration capacity (RC) as an area under the dependence of ∆S T on temperature. The integration range is selected

to cover the full-width at half-maximum of the ∆S T peak.

For the purpose of analyzing the magnetocaloric effect, the knowledge of magnetic entropy as a function of the

temperature and external magnetic field, S (T,H), is crucial. The entropy can be calculated from the Gibbs energy as

S = − (∂ 〈G〉r /∂T )H ; by the same token the total magnetization of the system M = − (∂ 〈G〉r /∂H)T , as well as the

magnetic specific heat CH = −T
(

∂2 〈G〉r /∂T
2
)

H
can be obtained. During these calculations, according to eq. (5), the

temperature and field dependence of the parameter λ should be taken into account.

The finite entropy change during the isothermal demagnetization process, when the external field changes from H

down to 0, is given by the relation ∆S T = −
∫ H

0
(∂M/∂T )H′ dH′.

The local sensitivity of the isothermal entropy change ∆S T to the external field amplitude H can be conveniently

quantified by means of the field exponent [32]:

n =
d ln∆S T

d ln H
= −

H

∆S T

(

∂M

∂T

)

H

. (7)

The value of n means that in the vicinity of a given thermodynamic point (T,H) the entropy change behaves approxi-

mately like Hn.

For the process of magnetization or demagnetization under adiabatic conditions, the temperature change, ∆TS ,

is often considered. It is obtained form the expression ∆TS = −
∫ H

0
(T/CH) (∂M/∂T )H′ dH′. During this adiabatic

process the magnetization changes accordingly between the external field H = 0 and H > 0.

In connection with the adiabatic cooling process, another quantity of interest can be defined, namely

ΓH = −
1

T

(

∂S

∂H

)

T

/

(

∂S

∂T

)

H

= −
1

CH

(

∂M

∂T

)

H

. (8)

This coefficient has an interpretation as the generalized (magnetic) Grüneisen ratio [33]. ΓH is expected to diverge at

quantum phase transition point and presents an experimentally measurable quantity [34].

A commonly accepted measure for the performance of a substance undergoing magnetic cooling cycle is the

refrigeration capacity (RC), defined as [35] RC =
∫ Thot

Tcold
∆S T (T ) dT , where the temperatures Tcold and Thot are usually

selected so as to cover the full-width at half maximum of the entropy change peak (see Fig. 1).

Among the thermodynamic cycles, important for magnetic refrigeration, the Ericsson cycle is especially worth

mentioning [36]. It consists of two isotherms and two processes in constant external field (see Fig. 2). For such a

cooling cycle, the efficiency can be defined as a ratio of the heat extracted from cold reservoir to the work necessary

to put in during the cycle, η = Qcold/W = Qcold/ (Qhot − Qcold).

It should be emphasized that all the magnetocaloric properties mentioned above can be calculated from one root

expression (2) for the Gibbs energy.

3

http://dx.doi.org/10.1016/j.jmmm.2011.03.020


NOTICE: this is the authors version of a work that was accepted for publication in Journal of Magnetism and

Magnetic Materials. Changes resulting from the publishing process, such as peer review, editing, corrections,

structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may

have been made to this work since it was submitted for publication. A definitive version was subsequently published

in Journal of Magnetism and Magnetic Materials, [VOL 323, ISSUE 15, (August 2011)]

DOI:10.1016/j.jmmm.2011.03.020

Figure 2: Ericsson magnetic cycle working between the external field H = 0 and H > 0, presented in the temperature-entropy variables. The heat

Qcold is extracted from the cold reservoir during the blue-marked sections, while the heat Qhot is transferred to a hot reservoir during the red-marked

sections.

3. Numerical results

3.1. Test of Pair Approximation method

As a benchmark of the PA method, let us present a comparison of its prediction for critical temperature of the Ising

model on various lattices with the exact results (where available) or precise Monte-Carlo (MC) or High Temperature

Series Expansion (HTSE) calculations. In the Fig. 3, the critical temperature is plotted against the effective coordi-

nation number zp for site-diluted model, including the particular case of non-diluted lattices (when p = 1 and the

coordination number is z). The plot covers the results for one-, two- and three-dimensional systems. The MFA pre-

diction, kBT MFA
c /Jz = zp/4, is presented by the dashed line, while the PA result, kBT PA

c /Jz = 1/2 ln
[

zp/ (zp − 2)
]

, is

presented by the solid line [30]. The filled symbols represent the accurate (three-dimensional) or exact (one- and two-

dimensional) results for various lattices [37–39]. The empty symbols represent the MC calculations for site-diluted sc

lattice [40–42]. It is visible that the predictions of PA reproduce satisfactorily the values of critical temperature and

the accuracy is remarkable especially for 3D systems with zp ≤ 6. Also the vanishing of the critical temperature for

1D system (with z = 2 and p = 1) is reflected in PA results, but absent in MFA predictions.

The analysis can be supplemented by the presentation of the critical concentration for diluted Ising systems,

below which the ferromagnetic order vanishes. Such a phenomenon occurs when the concentration drops below the

site-percolation threshold. Fig. 4 presents the critical concentration as predicted by PA, i.e. pc = 2/z, and compared

with the site-percolation thresholds, which are known for various lattices [43–46]. Again, the agreement is especially

striking for 3D systems and the vanishing of magnetic order for 1D chain (described by pc = 1) is correctly reproduced

by PA. It should be noticed that MFA improperly predicts the existence of a ferromagnetic order down to the lowest

magnetic component concentrations, i.e., pc = 0 for all lattices.

On the basis of the presented results, we can conclude that PA provides a useful and reliable approximate method

of constructing the thermodynamic description for the diluted Ising model and is accurate for small zp. One also

should not overlook the fact that the PA method has successfully been tested for the anisotropic Heisenberg model

[31], including dilution [30]. Therefore, we decided to choose this approach for studies of the magnetocaloric effect.

All the further numerical results are presented for the coordination number z = 6 (3D sc lattice), for which, in the

light of previous discussion, the method is expected to be sufficiently accurate. This follows from the consistency of

the critical temperature predictions between PA and MC results for crystalline and site-diluted sc lattice (see Fig. 3),

as well as reliable prediction of critical concentration (see Fig. 4)).

3.2. Entropy change in isothermal process

The isothermal entropy change, ∆S T , when the external field vanishes from H > 0 to H = 0, has been studied

numerically and some of the results are presented in Figs. 5 to 7. In Fig. 5∆S T is plotted vs. dimensionless temperature

kBT/Jz for the anisotropy exchange parameter J⊥/Jz = 0.9 and two different fields: H/Jz = 0.2 and H/Jz = 2. The

crystalline case is considered. Dashed lines correspond to the MFA while the solid ones represent the PA method. It is

seen in Fig. 5 that for the low field the maximum of entropy change occurs at the critical temperature and a sharp peak
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Figure 3: The critical temperature of an Ising model for various, one-, two- and three-dimensional lattices, as a function of a coordination number.

The solid line is the prediction of PA method, the dashed line is a MFA result. The shaded in symbols show the exact results or precise MC and

HTSE estimations (after [37–39]). The blank symbols present the MC results for a site-diluted sc lattice (after [40–42]).

Figure 4: The critical concentration for a site-diluted Ising model for various, one-, two- and three-dimensional lattices, as a function of a coordi-

nation number. The solid line is the prediction of PA method, the dashed line is a MFA result. The shaded in symbols show the exact results or

precise estimations for the site-percolation threshold (after [43–46]).

Figure 5: Normalized entropy change per lattice site in the isothermal demagnetization process from the external field H down to H = 0, for the

anisotropic Heisenberg model (Jz/J⊥ = 0.9), for two values of H. The solid lines are the PA results, the dashed lines are MFA results. The position

of TC for each case is marked by the vertical dotted line.
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Figure 6: Normalized entropy change per lattice site in the isothermal demagnetization process from the external field H/Jz = 0.1 down to H = 0.

The solid line is the PA result for the Ising model, the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the

MFA prediction. The position of TC for each case is marked by the vertical dotted line.

Figure 7: Normalized entropy change per lattice site in the isothermal demagnetization process from the external field H/Jz = 0.5 down to H = 0,

for the Ising model, for crystalline and site-diluted case. The solid lines are the PA results, the dashed lines are MFA results. The position of TC

for each case is marked by the vertical dotted line.
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Figure 8: The n exponent as a function of the temperature for the external magnetic field H/Jz = 0.1. The solid line is the PA result for the Ising

model, the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the MFA prediction. The position of TC for each

case is marked by the vertical dotted line.

is pronounced. However, for the high field the PA method shows a broadening of the peak from the paramagnetic site,

indicating that its shift toward T > TC is possible. A similar behaviour has been discussed in the Ref. [47].

In Fig. 6 ∆S T is plotted vs. temperature for the constant field H/Jz = 0.1 and two limiting cases: the crystalline

Ising and Heisenberg models. This demonstrates the influence of the anisotropy interaction, which is taken into

account by the PA method while the MFA calculation (dashed line), not influenced by the anisotropy, results in both

models being indistinguishable.

The influence of site-dilution on the entropy change in isothermal process of magnetization/demagnetization is

depicted in Fig. 7, for the Ising model and for rather strong external field amplitude of H/Jz = 0.5. It is visible

that position of the peak (Tpeak) follows the critical temperature change, which decreases with decreasing magnetic

component concentration p. Also the magnitude of the effect at the maximum is reduced which is connected with the

reduction of the magnetization magnitude in a diluted system. It is worth noticing that PA, unlike MFA (dashed line),

predicts some widening of the peak when the critical concentration is approached (pc = 1/3 in case of Fig. 7). The

widening of the ∆S T profile for strong dilution regime, as well as some shift of the peak towards T > TC, is correlated

with the anomalous behaviour (broad paramagnetic maximum) of the magnetic specific heat reported earlier [48]

(in the Ising systems). The lack of coincidence between TC and Tpeak as a result of dilution is similar to the same

phenomenon observed in strong external fields [47]. The phenomenon seems to appear for the models going beyond

MFA, both for the Ising and Heisenberg. In our opinion the effect is worth further investigation.

The sensitivity of isothermal entropy change to the magnetic field is quantified by the field exponent n and pre-

sented in Figs. 8 and 9 for the crystalline case. In Fig. 8 n is plotted vs. temperature in the field H/Jz = 0.1 for

the Ising and Heisenberg models. The MFA result (common for both models) is plotted by the dashed line. It can

be seen in Fig. 8 that a sharp minimum of n-exponent is observed at the Curie temperature. The value of n(TC) at

the minimum tends to the limit n(TC) = 2/3, when H → 0. This result is valid both for the Ising and Heisenberg

models, which is demonstrated in Fig. 9 where n(TC) is plotted vs. magnetic field. However, when the field increases

then n(TC) decreases, and this effect is much more pronounced within the PA method than MFA. This indicates that

the dependence of entropy change on field amplitude tends to saturate faster than predicted by MFA, at the same

time being weakly dependent on the interaction anisotropy. The behaviour of the index n has been discussed in Refs.

[26–29], [47], [49], [50].

For instance, it has been shown in Refs.[26] and [47] that when the scaling arguments are used the index n for

T = TC should not depend on the field. These scaling arguments are also connected with application of the Arrott-

Noakes equation of state, which is an approximate semi-empirical formula. It should be mentioned that the best

fit of the Arrott-Noakes equation to the experimental data needs several material parameters. However, the results

following such approach, for instance, ∆S T vs. H, reproduce well the corresponding experimental data. On the other

hand, in our approach the equation of state follows from the thermodynamic relationship M = − (∂ 〈G〉r /∂H)T and the

only fitting parameters are the exchange integrals in the Hamiltonian. Thus, our method seems more self-consistent

from the thermodynamic point of view. However, the price for it is a less precise agreement with the experimental

data, especially in the vicinity of the critical point. Let us emphasize that the Arrot-Noakes equation of state seems
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Figure 9: The n exponent at the critical temperature, as a function of the normalized external magnetic field. The solid line is the PA result for the

Ising model, the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the MFA prediction.

Figure 10: Normalized temperature change in the adiabatic magnetization process from the external field H = 0 up to H for the Ising model, for

two values of H. The solid lines are the PA results, the dashed lines are MFA results. The positions of TC are marked by the vertical dotted lines.

particularly useful as a tool for empirical description of rather complex systems.

The dependence of magnetic entropy change on the external field has been recently modeled in the Ref. [51],

where it has been emphasized that the proportionality of ∆S T to H2/3 at critical temperature has a limited range of

validity.

3.3. Temperature change in adiabatic process

The temperature change, ∆TS , has been studied in relation to the process of adiabatic magnetization and the results

are presented in Figs. 10 and 11. The data are plotted vs. dimensionless temperature, kBT/Jz, for which the field H > 0

was applied. In Fig. 10 the results for the crystalline Ising model in two magnetic fields: H/Jz = 0.02 and H/Jz = 0.10

are presented. The dashed lines correspond to the MFA method. Contrary to the PA, where ∆TS curves show some

characteristic peaks, the MFA method gives unphysical divergence of ∆TS when the temperature goes to infinity. Such

behaviour is connected with the fact that in MFA the entropy is constant above the Curie temperature. The divergence

is not observed experimentally. Yet the peaks (increasing with the field magnitude) have been measured in many

ferromagnetic systems (see for example [52], [53]). Thus, the PA results for ∆TS are qualitatively more correct than

those of MFA.

In Fig. 11 the comparison of the Ising and Heisenberg models is made in the constant magnetic field H/Jz = 0.10.

Again, the MFA results are indicated by the dashed line. It can be noticed that for the Heisenberg model the peak

is less pronounced than for the Ising one and is shifted toward lower temperature. In both figures 10 and 11, in the

low temperature region, the results of the MFA and PA methods converge for the Ising case. A difference with the

Heisenberg case, as seen in Fig. 11, originates from the residual entropy, which exists in the isotropic quantum system

when T → 0 [31].
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Figure 11: Normalized temperature change in the adiabatic magnetization process from the external field H = 0 up to H/Jz = 0.1 for the Ising

model, for two values of H. The solid line is the PA result for the Ising model, the dashed-dotted line is the PA result for isotropic Heisenberg

model, the dashed line is the MFA prediction. The positions of TC are marked by the vertical dotted lines.

3.4. Generalized Grüneisen ratio

The Grüneisen ratio for magnetic systems has been defined by eq. (8) and its calculations vs. temperature are

presented in Figs. 12 and 14. In Fig. 12 the results for the crystalline Ising model is plotted in PA for several magnetic

field values: H/Jz = 0.01; 0.1 and 1. It is seen that for low fields a peak occurs, which is connected with the

temperature derivative of magnetization. For larger fields the peak becomes broadened and shifted toward higher

temperatures.

In Fig. 13, for a relatively large field, H/Jz = 0.5, a comparison between the Heisenberg and Ising models is made.

The dashed line corresponds to the MFA calculation. We see that for very low temperatures the MFA result agrees well

with that of PA for the Ising model. However, for the Heisenberg model an increase of ΓH is predicted, which results

from the interplay between CH and (∂M/∂T )H behaviour in a quantum system. We think that increase of ΓH-ratio

when T → 0 has not been reported yet. An explanation for such increase can easily be made based on the spin-wave

theory, where (∂M/∂T )H ∝ T 1/2 on the one hand, and CH ∝ T 3/2 on the other hand. Thus, at low temperatures and

without external field, the ΓH-ratio given by eq. (8) should diverge like ∝ 1/T . However, in the presence of external

field the Zeeman term modifies the spin-wave energy, and the specific heat behaves like CH = aT 1/2 + bT 3/2. This,

in consequence, leads to the finite value of ΓH in the limit T → 0, in accordance with Fig. 13. We have checked that

for intermediate anisotropy parameters, 0 < J⊥/Jz < 1, the ΓH-curves lie between those for the Ising and Heisenberg

models.

The effect of dilution on the ΓH-ratio is demonstrated in Fig. 14 for the Ising model and H/Jz = 0.05. Some

peaks characteristic of the PA method occur and they are shifted toward lower temperatures while the concentration of

magnetic atoms, p, decreases. The dashed lines correspond to the MFA results. It is seen that although the results of

the PA and MFA methods converge in the low temperatures region, they are completely different for high temperatures.

The divergence of the dashed curves presented in Fig. 14 is evidently improper and is connected with the fact that

above the Curie temperature the magnetic specific heat vanishes in the MFA method. Another interesting feature seen

in Fig. 14 is that for very high temperatures the PA results become independent of the concentration, approaching the

same limit. This effect is worthy of further studies and possible experimental verification.

3.5. Efficiency of magnetic refrigeration

The values of RC, quantifying the performance of the system in refrigeration (Ericsson) cycle, appear to change

almost linearly with the amplitude of external field, according to both the MFA and PA predictions. This property is

illustrated in Fig. 15 for the Ising and Heisenberg models, together with the MFA results which are denoted by the

dashed line. It is seen in Fig. 15 that the influence of interaction anisotropy is very weak for this characteristic and

becomes observable only when a strong field is used. The linear or near-linear RC dependence on external field is

experimentally observed, for example in the results of Refs. [27], [54–57].

It should be mentioned that in the recent paper [26] the non-linear, power dependence of RC vs. H is predicted,

based on the scaling arguments. That result is again connected with application of the Arrott-Noakes equation of
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Figure 12: Generalized Grüneisen ratio as a function of normalized temperature, for the Ising model. The solid line is for the external field

H/Jz = 0.01, the dashed one for H/Jz = 0.1, the dashed-dotted one for H/Jz = 1.0. The position of TC is marked by the vertical dotted line.

Figure 13: Generalized Grüneisen ratio as a function of normalized temperature, for the external field H/Jz = 0.50. The solid line is the PA result

for the Ising model, the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the MFA prediction. The positions of

TC are marked by the vertical dotted lines.

Figure 14: Generalized Grüneisen ratio as a function of normalized temperature, for the Ising model in the external field H/Jz = 0.05, for crystalline

and site-diluted case. The solid lines are the PA results, the dashed lines are MFA results. The positions of TC are marked by the vertical dotted

lines.
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Figure 15: Normalized refrigeration capacity per lattice site as a function of the normalized external field. The solid line is the PA result for the

Ising model, the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the MFA prediction.

Figure 16: Normalized heat per lattice site extracted from the cold reservoir in one Ericsson cycle working between the external fields H = 0 and

H. The solid line is the PA result for the Ising model, the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the

MFA prediction.

state for calculations of RC. In order to explain the discrepancy with our almost linear result one should note that the

calculation of RC is based on calculation of ∆S T . Thus, the problem becomes essentially similar to that discussed in

the context of the Fig. 9, i.e., it reduces to the choice of the equation of state.

Another important quantity describing the real effectiveness of the refrigeration process is the amount of heat Qcold

extracted from the cold reservoir in one cycle. As far as the Ericsson cycle is concerned the dependence of Qcold on the

field amplitude used in the cooling cycle is presented in Fig. 16. The initial fast increase of the curves tends to saturate

for larger fields. It is observable that MFA markedly overestimates the value of exchanged heat by a significant value

when compared to the PA calculations. The influence of interaction anisotropy is also clearly pronounced here, as for

the Ising model the values of Qcold are noticeably higher than for the isotropic Heisenberg one.

The above results should be compared with calculations of the cooling cycle efficiency, ηEricsson, which is presented

in Fig. 17. Here it can be observed that using larger external field amplitude the efficiency of the cycle rapidly

decreases. Again, the MFA method overestimates the efficiency ηEricsson; however, there is only a slight difference

between MFA and PA results for the Ising model. Yet the PA predictions for the isotropic Heisenberg model are much

lower than that of MFA.

It can be deduced from Figs.16 and 17 that an increase of the field amplitude limits severely the efficiency on the

one hand, but it increases the absolute amount of heat extracted during one cycle on the other hand. Thus, in order to

design a well-performing cycle, a compromise between both tendencies must be found, for high efficiency with weak

field would require fast repetition of the cycle to gain assumed cooling power (or large amount of magnetic working

substance).

The effect of site dilution on ηEricsson is presented in Fig. 18 for the Ising model. By comparison with Fig. 17

it is seen that dilution decreases the cycle efficiency and, at the same time, the difference between the PA and MFA

11

http://dx.doi.org/10.1016/j.jmmm.2011.03.020


NOTICE: this is the authors version of a work that was accepted for publication in Journal of Magnetism and

Magnetic Materials. Changes resulting from the publishing process, such as peer review, editing, corrections,

structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may

have been made to this work since it was submitted for publication. A definitive version was subsequently published

in Journal of Magnetism and Magnetic Materials, [VOL 323, ISSUE 15, (August 2011)]

DOI:10.1016/j.jmmm.2011.03.020

Figure 17: Efficiency of the Ericsson cycle working between the external fields H = 0 and H. The solid line is the PA result for the Ising model,

the dashed-dotted line is the PA result for isotropic Heisenberg model, the dashed line is the MFA prediction.

Figure 18: Efficiency of the Ericsson cycle working between the external fields H = 0 and H, for the Ising model, for crystalline and site-diluted

case. The solid lines are the PA results, the dashed lines are MFA results.
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methods becomes more visible.

4. Final remarks

We performed extensive calculations to illustrate the magnetocaloric properties of the anisotropic Heisenberg

model on the s.c. lattice. The initial comparison of the predictions of PA and MFA for the critical temperature as

well as the critical concentration of the Ising model has satisfactorily tested the applicability of our method. The use

of PA allows us to study the influence of interaction anisotropy on the thermodynamic properties, which is especially

noteworthy considering that MFA remains completely insensitive to this parameter. Moreover, the predictions of PA

referring to the influence of site-dilution are much more reliable that that of MFA. Such improvement is caused by

taking the spin-pair correlations into account, which implies that the internal energy, as well as magnetic entropy, are

better calculated.

We have shown that MFA may lead to incorrect results even at the qualitative level, with regard to the generalized

Grüneisen ratio and the temperature difference in adiabatic magnetization/demagnetization process. Unlike MFA, PA

provides the results which are mostly consistent with the experimentally observed behaviour of the ferromagnetic

systems. The predictions of PA and MFA differ also at the quantitative level. As an example, MFA overestimates

the efficiency of the Ericsson cycle by a significant value or predicts much slower decrease of the n index with the

amplitude of the external field. On the basis of all those comparisons one can generally conclude that the PA method,

being more accurate than MFA, can be recommended from the methodological point of view for the description of a

self-consistent thermodynamics.

Let us emphasize that there are numerous efforts aimed at finding universal relations for the magnetocaloric effect

by using the scaling approach (see [26–28, 49, 56]). These models, however, are based on the phenomenological

equations of state like the Arrott-Noakes equation, or expansions of the free-energy within the Landau model of phase

transitions, with the coefficients known from the experiment [58–60], successful at describing empirically complex

magnetic systems. Our model, by contrast, is constructed on fully microscopic grounds. It starts from the Hamiltonian

level, and hence the only parameters entering the calculations are the exchange integrals.

Further developments of the presented approach might include extension of the studies to the models with XY-type

interaction anisotropy and systems with antiferromagnetic interactions, especially those in which quantum critical

point behaviour can be expected. Another issue are the investigations of low-dimensional magnets, for which the

PA method is also applicable. For more general thermodynamics, the lattice and electronic contribution to the total

entropy of magnetic systems would be worth consideration.
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