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Michal Jaščur
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Abstract

Simple application of the Einstein model combined with the elastic description of solid state is developed.
The frequency of quantum oscillators has been assumed as volume dependent and, furthermore, elastic
energy terms of static character have been included to complete the description. Such an extension enables
to construct the complete thermodynamics. In particular, the model yields practical equation of state
and describes the thermal expansion coefficient as well as the isothermal compressibility of solids. The
thermodynamic properties resulting from the Gibbs free-energy analysis have been calculated and illustrated
in figures. Some comparison of the theoretical results with experimental data for solid argon has been made.
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1 Introduction

The Einstein model of the solid state has been known for many years as the first model able to describe qualita-
tively the low-temperature behaviour of the specific heat [1, 2, 3]. This model often serves as an approximation
for studies of optical phonons, or soft modes in some intermetallic compounds [4] and, as well, is found suit-
able to describe thermal properties of some modern low-dimensional structures [5]. It is also referred to as
a prototype for which the more sophisticated Debye model has been developed [6]. Nonetheless, it has been
shown that in many cases the Einstein model provides better results than the Debye model [7]. It is known
that in spite of its usefulness and simplicity, the pure Einstein model lacks the ability to describe fully the ther-
modynamic properties of the solid state. For instance, neither the proper equation of state, nor the thermal
expansion or compressibility can be obtained. Thus, apart from the celebrated specific heat behaviour, which
is an important consequence of the quantum nature of harmonic oscillators, other thermodynamic properties
have not successfully been described within this model.

There are numerous attempts in the literature aimed at improving the pure Einstein model [8, 9, 10, 11, 12].
For instance, a ”variational Einstein model” has been developed in Ref. [8] for describing low temperature
solids from the Feynman path integral perspective. The formalism has been applied to a specific system, con-
sisting of solid hydrogen with lithium impurities. However, one of the theoretical results of Ref. [8] seems to
be controversial, namely the dependence of the free energy, which is presented there as an increasing func-
tion of temperature (see Fig.16 of Ref. [8]), giving the indication that the corresponding entropy is negative.
Cankurtaran and Askerov [9] have introduced the so called Einstein-Debye model for which the calculations
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of the thermal expansion coefficient were possible by introducing the Grüneisen parameter. However, neither
the Gibbs free-energy, nor the compressibility could be calculated within that approach. Thus, the complete
thermodynamic description has not been achieved there. In Ref. [10] the ”nonlocal Einstein crystal” has been
considered, for which the thermodynamic functions have been constructed. The considerations presented in
Ref. [10] seem to be of pure theoretical character when the Einstein crystal is replaced by a harmonic sublattice
with a size that is coupled to the total volume. Additionally, the Mie-Grüneisen approach has been developed
by Holzapfel et al. for the description of simple metals [11] as well as some simple solids, such as NaCl and
MgO [12]. The optimized pseudo-Debye-Einstein model has been used there, and good agreement with the
experimental data has been achieved. However, the method presented in Refs. [11, 12] does not seem to be
straightforward enough to use since it requires many fitting parameters to be introduced for calculations of the
free-energy.

On the other hand, there exists a rich literature on the description of solid state properties within the elastic
models [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. These studies are supported by the experimental measurements
[23, 24]. For instance, Birch [19] considers the single-crystal and polycrystalline NaCl at high pressure using
the finite strain (Eulerian) theory. In this approach, the equation of state contains coefficients which have to be
fitted in each particular temperature. Despite the usefulness of the model for studies of isothermal compression,
it does not involve the thermal (vibrational) energy and therefore is not suitable for description of the specific
heat. Similarly, in the paper of Vinet et al. [20, 21] the universal form of the equation of state has been found
based on the scaling argumentation. The results obtained there have been discussed in the context of the
Birch-Murnaghan equation of state [18] and show very good agrement with the experimental data. However,
the Gibbs free-energy has not been derived in that works (Ref. [20, 21]), so that the full thermodynamic de-
scription of the system has not been constructed. As a matter of fact, the same deficiency can be risen for some
other papers devoted to the application of the equation of state based on the elastic models. A comparative
review of the experimental equations of state existing in the literature is given in Refs. [25, 26].

Among other modern methods one should mention the first principles computations within the density-
functional theory (DFT). This includes, for instance, the equation of state, elastic constants and phonon
dispersion relation calculations [27]. On the other hand, by the first-principles molecular-dynamics simulation
(FPMD) method the thermal expansivity and the specific heat have been calculated [28]. A good agreement
with the experimental data is often achieved. However, the analytic description remains always desirable from
the point of view of understanding the physics behind the model.

Such a situation motivated us to combine the Einstein and elastic models and to complete them in a way
that enables to overcome the above-mentioned problems. Looking in the literature, such idea can already
be found in some papers [29, 30], however, only particular thermodynamic characteristics have been studied
there. Thus, our aim is to construct the self-consistent and full thermodynamic description. In order to make
it possible, the following aspects should be taken into account: Firstly, the common frequency of quantum
oscillators should not be treated as a constant value but should be volume (and, in consequence, temperature)
dependent. Obviously, such idea is not new and for the first time emerged in the paper of Grüneisen [31], where
a specific frequency/volume dependence has been assumed as a hypothesis. This assumption is supported by
the argument that the wavelength of collective excitations (phonons) depends on the crystal size. Secondly,
the vibrational Einstein Hamiltonian necessarily needs to be completed by the static, elastic part [32]. The
elastic energy accounts for the mutual interactions of the atoms even if they are not in a thermal vibrating
state [18, 22]. It is known that the static energy is responsible for crystal compressibility [18], and owing to
its magnitude and nature, cannot be inferred from the model of independent oscillators. It turns out that for
the purpose of the combined model the elastic free-energy should also be modified by taking into account the
linear term (which is normally neglected in the elastic theory) as well as the static entropy. The details of this
modification will be explained in the next section. Owing to analytical simplicity we will neglect the electronic
excitation term. It is argued that this term is generally a small correction to the solid equation of state [30].

Taking this into account, we propose improving the model and constructing the Gibbs energy of the sys-
tem from the beginning. We assume that the balance between the internal and external pressures keeps the
system in mechanical equilibrium. According to our knowledge, the detailed balance between the expanding
pressure of quantum oscillators and the compressive elastic pressure has not been discussed in the literature.
Having obtained the expression for the Gibbs energy, a full thermodynamic description of the crystal can be
achieved. The main parameters of the theory, which can be extracted from experiment, are the Einstein fre-
quency in the ground state (or the Einstein temperature), the volume elastic modulus in the ground state -
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supplemented by the structural space-filling coefficient - and the Grüneisen parameter. We will show that these
parameters, in principle, allow us to calculate other properties within a reasonable range of experimental values.

The paper is organized as follows: In the following, theoretical section, the outline of the model is given
and the method of derivation the Gibbs energy is presented. In particular, for the combined model the new
equation of state is obtained. In the last section, some representative numerical results concerning the thermo-
dynamic properties are illustrated in figures. These calculations are compared with the experimental data for
solid argon. A critical discussion of the presented approach is also included.

2 Theoretical model

2.1 The model Hamiltonian

The Hamiltonian is assumed in the form of:

H = Hε +Hω, (1)

where the elastic, volume dependent part, Hε, can be written as:

Hε = NAε+
1

2
NB ε2 − 1

3!
NC ε3 +

1

4!
ND ε4, (2)

whereas the oscillatory part, Hω, is given in the form:

Hω =

3N∑
i=1

h̄ω

(
n̂i +

1

2

)
. (3)

In (2) and (3) N is the number of atoms which are treated as the three-dimensional oscillators, and n̂i is the
excitation number operator connected with the i-th oscillator. The form of the elastic Hamiltonian (2) assumed
in this paper is different (much simpler) from that presented in Refs. [29] or [30]. The elastic Hamiltonian, Hε,
consists of several terms. The most important is the harmonic term

(
∝ ε2

)
, where B-constant is the volume

elastic modulus in the ground state. We found that the linear term (∝ ε) is also necessary, where A-constant
is responsible for the internal (compressive) pressure. Although the linear, anharmonic part is assumed to be
very small in comparison to the harmonic one (A � B), its role is very important in balancing the internal
(expanding) pressure produced by the anharmonic oscillators, i.e., by the Hω part. A certain requirement for
A-values is imposed as the equilibrium condition for the whole energy, which is discussed later. The relative
elastic deformation ε is defined by the relation:

V = V0 (1 + ε) , (4)

where V is the crystal volume in a current thermodynamic state, and V0 is the volume at external pressure p = 0
(vacuum) and temperature T = 0. Equation (4) indicates that a non-zero value of volume deformation ε occurs
when the external pressure p 6= 0 and/or the temperature T > 0 is applied. Thus, a possibility of introducing
the isothermal compressibility and thermal expansion coefficient has been opened within the presented approach.

A composition of the Hamiltonian (1) consisting of the classical (Hε) and quantum (Hω) parts is justified
for the purpose of constructing the thermodynamics [22]. Obtaining the free energy of the full system is one of
the main goals and that can be conveniently done by summing up the free energies corresponding to those two
parts. A similar modus operandi has also been presented in the paper Ref. [32] albeit for a different approach.
It should be stressed that by introducing the elastic Hamiltonian, Hε, the static non-vibrational energy has
been taken into account, which is crucial for the equation of state. It is worth mentioning that the method can
be further generalized by introducing also the electronic part of the free energy [22].

2.2 The elastic free-energy

In order to calculate the elastic (Helmholtz) free energy, one has to evaluate the static internal energy and
the static entropy. The static internal energy Uε can be immediately found from the classical part of the
Hamiltonian:

Uε = Hε (5)
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From Eq.(2) it is seen that this energy is explicitly volume-dependent. On the other hand, the static entropy
Sε is connected with filling up the volume of the system in the absence of thermal movement. Let us denote
by Vex the own volume occupied by N atoms in the crystal state. For a given crystallographic lattice we can
introduce the space filling coefficient q = Vex/V0. For instance, for FCC and HCP structures and the model of
hard spheres q ≈ 0.74. Thus, inside each primitive cell q = ρ1 is the probability of finding an atom, whereas
1 − q = ρ2 is the probability of opposite event. The static entropy connected with the bimodal distribution
ρi (where i = 1, 2) can be calculated from the mean value of ln ρi, using the general formula for the exact
differential of entropy: [33]

dSε = −NkBd〈ln ρi〉. (6)

Hence, in our case:
Sε = −NkB [q ln q + (1− q) ln (1− q)]−NkBc (7)

where c is a constant of integration. Since c is arbitrary, as a matter of convenience we can choose c = 0.
This arbitrariness is due to the fact that only changes in entropy are experimentally measurable and have
thermodynamic significance [33, 34].

The entropy is additive with respect to the number of primitive cells N . For the purpose of this paper it is
assumed in the first approximation that the space-filling coefficient q is volume independent and, in consequence,
the corresponding entropy Sε is constant. Thus, the static entropy (for c = 0) results in the residual entropy of
the crystal for T → 0, which is due to the fact that the whole volume is not perfectly filled. Moreover, the im-
portant role of Sε (being dependent on q) may manifest itself in the structural (1st order) phase transitions [22].

The elastic, Helmholtz free-energy can now be found from the formula:

Fε = Uε − TSε. (8)

Hence, we finally obtain:

Fε = NAε+
1

2
NB ε2 − 1

3!
NC ε3 +

1

4!
ND ε4

+ NkBT [q ln q + (1− q) ln (1− q)] . (9)

For the full thermodynamic description this energy should be completed by the vibrational, Einstein part.

2.3 The vibrational free-energy

For the Hamiltonian (3) it is convenient to employ the canonical ensemble. The Helmholtz free-energy can be
found from the formula:

Fω = −kBT lnZω (10)

where the statistical sum Zω can be calculated exactly as:

Zω = Tr e−βHω =

[
2 sinh

(
1

2
βh̄ω

)]−3N

(11)

where β = 1/kBT . Thus we obtain:

Fω = 3NkBT ln

[
2 sinh

(
1

2
βh̄ω

)]
(12)

On the other hand, the vibrational internal energy Uω is given by the statistical mean value of the corresponding
Hamiltonian:

Uω = 〈Hω〉 = 3Nh̄ω

(
〈n̂i〉+

1

2

)
=

3

2
N

h̄ω

tanh
(

1
2βh̄ω

) . (13)

Hence, the vibrational entropy Sω can be found from the relationship:

Sω =
Uω − Fω

T

=
3N

2T

h̄ω

tanh
(

1
2βh̄ω

) − 3NkB ln

[
2 sinh

(
1

2
βh̄ω

)]
. (14)
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The specific heat at constant V is given by the well-known formula:

CV = T

(
∂Sω
∂T

)
V

=

(
∂Uω
∂T

)
V

= 3NkB

(
Θ

2T

)2

sinh−2

(
Θ

2T

)
(15)

where Θ = h̄ω/kB.
Further, in order to improve the Einstein model it is assumed that ω is not a constant but volume dependent
according to the Grüneisen assumption [31]:

ω ∝ 1

V γ
(16)

where γ is the Grüneisen constant. Thus, we can write:

ω =
ω0

(1 + ε)
γ , (17)

where we made use of the relation (4), and ω0 in (17) is the Einstein frequency in the ground state (i.e., at
p = 0, T = 0, and ε = 0). Then, the variable Θ = h̄ω/kB can be presented in the form of:

Θ =
Θ0

(1 + ε)
γ (18)

where

Θ0 =
h̄ω0

kB
. (19)

Θ0 is the so-called Einstein temperature. The correction of the Einstein model presented by Eq.(18) implies
that all the thermodynamic potentials will depend on the volume via elastic deformation ε.

2.4 Thermodynamic functions of the combined model

The total Helmholtz free-energy is given by the sum of expressions (9) and (12), with the help of (16)-(19):

F = NAε+
1

2
NB ε2 − 1

3!
NC ε3 +

1

4!
ND ε4

+ NkBT [q ln q + (1− q) ln (1− q)]

+ 3NkBT ln{2 sinh

[
Θ0

2T

1

(1 + ε)
γ

]
}. (20)

The total Gibbs energy is then given by:
G(p, T ) = F + pV (21)

The equation of state can be obtained from the variational principle:(
∂G

∂ε

)
p,T

= 0 (22)

which, from (21), is equivalent to:

pV0 = −
(
∂F

∂ε

)
T

(23)

where F is given by (20). From (23), after differentiation of (20), we obtain:

pV0 = −NA−NBε+
1

2
NCε2 − 1

3!
NDε3

+
3

2
γ

NkBΘ0

(1 + ε)
γ+1

tanh
[

Θ0

2T
1

(1+ε)γ

] . (24)

For the high-temperature limit equation (24) takes a form:

p = −∂Fε
∂V

+
3NkBT

V
γ (25)
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which is the classical lattice dynamics pressure [22]. On the other hand, in the low-temperature limit (T → 0)
and for small pressure the deformation ε is small too, and Eq.(24) can be linearized as:

pV0 ≈ −NA−NBε+
3

2
γNkBΘ0 [1− (γ + 1) ε] . (26)

Naturally, when p = 0 then in the ground state is ε = 0 as well. Consequently, we have to demand that
the internal pressure of oscillators, which then is equal to 3

2γNkBΘ0, cancels out the pressure arising from
the anharmonic, linear term, i.e., −NA. Then the system is in equilibrium without any external force. The
condition for this demand leads to the specific choice for the anharmonic constant A, namely:

A = 3γA0 (27)

where

A0 =
1

2
h̄ω0 =

1

2
kBΘ0. (28)

The energy constant A0 presents a convenient unit for introduction of the dimensionless external pressure π
defined by:

π =
V0

NA0
p (29)

and the dimensionless temperature τ :

τ =
kBT

A0
. (30)

With the above quantities, and Eqs.(27) - (28), the equation of state (24) takes the simple form:

π + 3γ +
B

A0
ε − 1

2

C

A0
ε2 +

1

3!

D

A0
ε3

= 3γ
1

(1 + ε)
γ+1 tanh−1

[
1

τ (1 + ε)
γ

]
. (31)

Eq.(31), obtained within the approximations assumed in this paper, presents a dimensionless equation of state
from which the elastic deformation ε(π, τ) can be calculated for arbitrary temperature τ and external pressure
π.
The Gibbs free-energy (21) in the dimensionless form can be written as follows:

G(p, T )

NA0
= 3γε+

1

2

B

A0
ε2 − 1

3!

C

A0
ε3 +

1

4!

D

A0
ε4

+ τ [q ln q + (1− q) ln (1− q)]

+ 3τ ln{2 sinh

[
1

τ (1 + ε)
γ

]
}+ π (1 + ε) , (32)

where ε = ε (π, τ) is given by (31). It is easy to show that from the formula (32) all thermodynamic properties
can be derived self-consistently. For instance, the total entropy fulfills the relationship:

S = −
(
∂G

∂T

)
p

= −kB

A0

(
∂G

∂τ

)
π

(33)

and, with the use of (31), it can be obtained in the dimensionless form:

S

NkB
= −q ln q − (1− q) ln (1− q)

+
3

τ (1 + ε)
γ tanh−1

[
1

τ (1 + ε)
γ

]
− 3 ln{2 sinh

[
1

τ (1 + ε)
γ

]
}. (34)

On the other hand, the volume of the sample satisfies the equation:

V =

(
∂G

∂p

)
T

=
V0

NA0

(
∂G

∂π

)
τ

, (35)
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which again leads to the equation of state (31). Other thermodynamic properties follow from the second
derivatives of the Gibbs energy. For instance, the heat capacity at constant p is given by:

Cp = −T
(
∂2G

∂T 2

)
p

= −kB

A0
τ

(
∂2G

∂τ2

)
π

, (36)

whereas the heat capacity at constant V can be calculated from the relationship:

CV = −T
(
∂2F

∂T 2

)
V

=

(
∂U

∂T

)
V

=
kB

A0

(
∂U

∂τ

)
ε

. (37)

On the other hand, the internal energy, U , can be written in the dimensionless form:

U

NA0
= 3γε+

1

2

B

A0
ε2 − 1

3!

C

A0
ε3 +

1

4!

D

A0
ε4

+ 3
1

(1 + ε)
γ tanh−1

[
1

τ (1 + ε)
γ

]
. (38)

Application of (38) in (37) leads to the dimensionless expression for CV :

CV
NkB

= 3

[
1

τ (1 + ε)
γ

]2

sinh−2

[
1

τ (1 + ε)
γ

]
. (39)

It should be noted that for the particular case, when ε = 0, Eq.(39) is equivalent to formula (15). However, in
general, a non-zero ε should be determined from the equation of state (31).
Among other response functions which can be calculated either from the Gibbs free energy, or from the equation
of state is, for example, the thermal expansion coefficient:

αp =
1

V

(
∂V

∂T

)
p

=
kB

A0

1

1 + ε

(
∂ε

∂τ

)
π

, (40)

and the isothermal compressibility:

κT = − 1

V

(
∂V

∂p

)
T

= − V0

NA0

1

1 + ε

(
∂ε

∂π

)
τ

. (41)

In particular, for p = 0 and T = 0, i.e., in the ground state, these response functions can be obtained from the
approximate equation of state (26). For this purpose, Eq.(26) can be re-written in the form:

ε ≈ − V0

NA0

1

3γ (γ + 1) +B/A0
p. (42)

It can be observed that Eq.(42) for p < 0 presents Hooke’s law at T = 0. Further, we can formally make use
of the linear expansion of volume, namely:

V (p, T ) ≈ V0 +

(
∂V

∂T

)
(p=0
T=0)

T +

(
∂V

∂p

)
(p=0
T=0)

p. (43)

It can be noticed that Eq.(43) can equivalently be written as:

ε ≈ α0 T − κ0 p (44)

where α0 and κ0 are the response functions (40) and (41), respectively, and these functions are taken in the
ground state. Now, by comparison of Eqs.(42) and (44) we obtain the result:

α0
def
=

1

V0

(
∂V

∂T

)
(p=0
T=0)

= 0 (45)

and

κ0
def
= − 1

V0

(
∂V

∂p

)
(p=0
T=0)

=
V0

NA0

1

3γ (γ + 1) +B/A0
. (46)

It is apparent that the both elastic coefficients, A(= 3γA0) and B, are important for determination of isothermal
compressibility at T = 0. Since B � A0, where A0 is the zero-point energy of Einstein oscillators, it is obvious
that for this compressibility an elastic energy plays a dominant role. Finally, let us note that the equation of
state derived by Vinet et al. [21] for T = 0 reduces for small p to the form: ε ≈ (1/B0) p, which agrees with
our equation(42) in the limit A0 → 0.
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2.5 A note on the Grüneisen equation

The Grüneisen parameter γ is introduced by the definition [2, 3]:

γ
def
= −V

ω

dω

dV
. (47)

which is equivalent to our relation (16). The typical experimental values of the Grüneisen parameter belong
to the range 1 ≤ γ ≤ 3 [3]. It can be mentioned that some particular definitions of that parameter, depending
on the model, have been discussed in Ref. [35]. The experimental determination of γ is connected with the
so-called Grüneisen equation:

αp
κT

= γ
CV
V

(48)

which has been tested extensively, especially in the low temperature region. It is worth noticing that the
derivation of (48) can be based on the exact thermodynamic identity:

αp
κT

=

(
∂p

∂T

)
V

. (49)

In the case in hand, in order to calculate (∂p/∂T )V , the equation of state p = p(T, V ) should be taken in the
form of (24). It can easily be checked that after the calculation of the derivative in (49), eq.(48) is satisfied.
It should also be noted that the calculations of all quantities in (48) using the present method require prior
solution of the equation of state (31). In particular, for the low-temperature region, where CV tends to zero
according to the 3rd law of thermodynamics, we obtain from eq.(48) that αp → 0. This limit is in agreement
with the previous result (45).

3 Numerical results and discussion

3.1 Exemplary calculations for the model

In order to perform the numerical calculations, based on the formulas from the preceding section, it is necessary
to estimate the energy constants, from which A0 and B are the most important. The volume elastic modulus
in the ground state, B, can be found, for instance, from the sound velocity measurements and its experimental
value is of the order (10−19÷10−18) J. In turn, A0-coefficient is given by Eq.(28), where Θ0 is the Einstein tem-
perature. Assuming that Θ0 is typically of the order ∼ (102÷103) K we can estimate A0 as ∼ (10−21÷10−20)
J. Thus, the A-constant (A = 3γA0) is about 2 orders smaller than the elastic bulk modulus B, and the
linear anharmonic term in the Hamiltonian (2) can be considered as a small correction to the harmonic one.
This confirms the fact that such quantities as the thermal expansion coefficient αp (Eq. 40) or the isothermal
compressibility κT (Eq. 41) are mainly determined by B-constant, not by A0. The above estimations of A
and B constants, together with the assumed C = D = 0, yield from Eq.(40) αp ∼ (10−5 ÷ 10−4) 1/K for the
temperatures near the Einstein temperature, which is a physically reasonable order of value. In the same token
assuming a realistic amount of volume per atom, i.e., V0/N ∼ (10−29 ÷ 10−28) m3, we obtain on the basis of
Eq.(41) κT ∼ (10−11 ÷ 10−10) 1/Pa, which is also a correct order for the isothermal compressibility.

Although the anharmonic elastic energy ∝ A is a small correction in comparison to the harmonic one, it can
be of the same order of magnitude as the vibrational energy resulting from Einstein oscillators. Therefore, this
anharmonic term is vital in balancing the expanding pressure resulting from oscillators, in the case when the
frequency is volume dependent (17). The expanding pressure arises owing to the decrease of the energy (fre-
quency) of oscillators when they experience collective excitations in increasing volume. The total equilibrium of
the system requires balancing of the internal (stretching) forces resulting from expanding quantum oscillators,
internal compressive forces of the elastic medium and the external pressure p. The resulting deformation ε is
temperature and pressure dependent and can be calculated from the equation of state (31). The other energy
constants, C and D, play merely a correcting role in modeling the static potential, and are important for high
temperatures where the elastic deformation ε is significant. The exemplary numerical results, presented in this
section in Figs.1-8, are obtained for the following set of parameters: B/A0 = 102, D = 0 and q = 0.74.

In Fig.1 we present the dependence of ε upon π for different reduced temperatures τ = 0, 0.5 and 1, as
well as for two selected Grüneisen parameters: γ = 1 and γ = 2. The calculations are based on the equation
of state (31) for C/A0 = D/A0 = 0. It is seen that these dependencies are almost linear in character, and
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Figure 1: Elastic deformation ε vs. dimensionless pressure π. The curves are selected for three dimensionless
temperatures: τ = 0, 0.5 and 1 and two Grüneisen parameters γ = 1 (dashed) and γ = 2 (solid). The elastic
energy parameters are : B/A0 = 100, C/A0 = D/A0 = 0.

Figure 2: Elastic deformation ε vs. dimensionless temperature τ . The curves are selected for three dimensionless
pressures: π = 0, 0.5 and 1 and two Grüneisen parameters γ = 1 (dashed) and γ = 2 (solid). The elastic energy
parameters are : B/A0 = 100, C/A0 = D/A0 = 0.

the slopes of the curves correspond to the isothermal compressibility. It can be deduced from Fig.1 that the
isothermal compressibility coefficient should be weakly dependent on pressure in a wide range of temperatures.
This observation is in accordance with the analogous assumption in the Murnaghan theory of the equation
of state [18]. At higher temperatures (for τ = 1) the Grüneisen parameter has remarkable influence on the
magnitude of elastic deformation, leading to the increase of ε when γ increases.

In Fig.2 the dependence of ε upon τ for various external pressures (π = 0, 0.5 and 1) is presented. The rest
of parameters are the same as in Fig.1. In this case the dependencies are not linear and their local slopes are
attributed to the thermal expansion coefficient. It is remarkable that by increasing the Grüneisen parameter γ
the relative deformation ε increases, which is evidently pronounced at high temperatures. Such behaviour is in
agreement with the previous figure (Fig.1). The dependence presented in this figure is qualitatively similar to
the lattice constant dependence on temperature, as can be seen in the Ref. [36] for the case of AlN. The effect
of external pressure on the temperature dependence of relative deformation in Fig.2 resembles, for example,
the results obtained in the Ref. [26].

In Fig.3 the dimensionless thermal expansion coefficient (see Eq.40) is plotted vs. temperature τ for external
pressure π = 0 and Grüneisen parameter γ = 2. Different curves correspond to various C/A0 parameters. It is
seen that C/A0 has influence mainly at high temperatures, where it causes the increase of the thermal expansion
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Figure 3: The dimensionless thermal expansion coefficient A0

kB
αp = 1

1+ε

(
∂ε
∂τ

)
p

vs. dimensionless temperature

τ . Different curves correspond to C/A0 = 0, 100, 200 and 300, whereas B/A0 = 100 and D/A0 = 0. The
external pressure is π = 0 and Grüneisen parameter is γ = 2.

Figure 4: The dimensionless isothermal compressibility coefficient NA0

V0
κT = − 1

1+ε

(
∂ε
∂π

)
T

vs. dimensionless
temperature τ . The parameters are the same as in Fig.3.

coefficient. Let us note, on the basis of Eq. (28) and (30), that τ = 2 corresponds to the Einstein temperature.
In the low-temperature region the thermal expansion coefficient tends to zero independently on C/A0, which is
in agreement with the Grüneisen equation (48). A qualitatively similar behaviour for the thermal expansivity
has been found in Ref. [12] for the case of MnO, in Ref. [18] for Ti, Al, NaCl and Na, or in Ref. [36] for AlN.
The conclusion that the anharmonic term becomes important only in the high-temperature region is in agree-
ment with the free energy calculations from first principles [28]. The similar conclusion can be drawn from the
paper Ref. [37] where the influence of intrinsic anharmonicity on the thermodynamic functions has been studied.

The dimensionless isothermal compressibility (see Eq.41) is plotted in Fig.4 vs. τ for the external pressure
π = 0 and Grüneisen parameter γ = 2. As in Fig.3, different curves correspond to various C/A0 parameters.
A remarkable influence of C/A0-values on the compressibility is seen for the temperatures τ > 1/2. On the
other hand, for τ → 0 the compressibility tends to some non-zero value, κ0, being in agreement with Eq.(46).
A qualitatively similar experimental results have been obtained for Pb and NaCl. [18] The dependence of
isothermal compressibility on temperature corresponds to the fact that the elastic constants are temperature
dependent (the exemplary studies can be found in Refs. [32, 38]).

In Fig.5 the Gibbs free-energy per 1 atom is presented in A0-units vs. reduced temperature τ . The three
curves in Fig.5 correspond to different external pressures: π = 0, 0.5, and 1, and are plotted by the solid, dashed
and dashed-dotted lines, respectively. In this case C/A0 = 0 and γ = 2. We see that application of the external
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Figure 5: The Gibbs free-energy per 1 lattice site in A0 units upon dimensionless temperature τ . Three values
of the dimensionless pressure π = 0, 0.5 and 1 are assumed. The Grüneisen parameter is γ = 2 and the elastic
energy parameters are: B/A0 = 100, C/A0 = D/A0 = 0.

Figure 6: Entropy per 1 lattice site in Boltzmann constant units upon dimensionless temperature τ . The dashed
and solid lines correspond to γ = 1 and γ = 2, respectively, whereas B/A0 = 100, C/A0 = D/A0 = 0 and
π = 0. The dashed-dotted line is plotted under constraint ε = 0, i.e., for the ideal Einstein model.

pressure causes the increase of the Gibbs energy. It is demonstrated in Fig.5 that the Gibbs energy is a concave
function of temperature with a monotonously decrease vs. τ . Such behaviour indicates thermodynamically
stable solution when the entropy (defined by Eq.33) is positive. Let us note that the initial slope of the Gibbs
energy, at τ → 0 corresponds to the residual entropy.

The entropy is illustrated in Figs.6 and 7 as a function of temperature τ . In both figures C/A0 = 0. In
Fig.6 we plotted entropy per 1 lattice site in the Boltzmann constant units, for external pressure π = 0. The
solid and dashed curves, which are for γ = 1 and γ = 2, respectively, correspond to our model, where ε is a
function of temperature and is calculated from the equation of state (31). Due to our choice of integration
constant (c = 0 in Eq.(7)) we see that the residual (configurational) entropy is present, which does not depend
on the Grüneisen parameter γ. Moreover, one can notice that for T → 0 the entropy change vs. temperature
tend to zero (∆S → 0), which is in accordance with the third law of thermodynamics. On the other hand, the
increase of γ causes some small increase of entropy at high temperatures. For comparison, the dashed-dotted
curve presents the entropy for the pure Einstein model, where ε is put equal to 0 for all temperatures. As stated
before, the condition ε = 0 is equivalent to the assumption that the frequency of oscillators is kept constant
and does not depend on volume. For the pure Einstein model there is no residual entropy in the ground state,
since the configurational ordering of atoms is not taken into account.
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Figure 7: Entropy for the dimensionless pressure π (π = 0.5 and 1) normalized to the entropy for π = 0, vs.
dimensionless temperature τ . The dashed and solid lines correspond to γ = 1 and γ = 2, respectively. The
elastic energy parameters are the same as in Fig.6.

Figure 8: Specific heat CV at constant V per 1 lattice site in kB units vs. dimensionless temperature τ . The
elastic energy parameters are the same as in Figs. 6 and 7. In the main plot the parameters π = 0 and γ = 2
are assumed. In the inset the difference CV (π)−CV (ε = 0) is plotted for π = 0 and π = 1, as well as for γ = 1
(dashed line) and γ = 2 (solid line).
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It turned out that the entropy is very weakly sensitive to the external pressure, and in Fig.7 we want to
study this property in more detail. The relative changes of the entropy S(π)/S(π = 0) are plotted vs. τ for
π = 0.5 and 1. The dashed and solid lines are for γ = 1 and γ = 2, respectively. We note that the sensitivity of
S on π is greater for higher Grüneisen parameter γ. It is also seen that the influence of high external pressure on
the ratio S(π)/S(π = 0) is most remarkable for some intermediate temperatures (τ ≈ 0.6), whereas for τ → 0
the influence of π becomes negligible. Again, the behaviour of S near T = 0 is in agreement with the third
law of thermodynamics. The lowering of entropy for T > 0, when the external pressure is applied, corresponds
to the positive thermal expansion coefficient, in accordance with the Maxwell relation: (∂S/∂p)T = − (∂V/∂T )p.

The specific heat per 1 lattice site in the Boltzmann constant units and at constant volume is plotted vs.
temperature τ in Fig.8. The anharmonic parameters are C/A0 = D/A0 = 0. The main plot has been obtained
for π = 0 and γ = 2. We note that the value of τ = 2 corresponds to the Einstein temperature. The low-
temperature behaviour of the specific heat is typical for the Einstein oscillators, being in agreement with the
3rd law of thermodynamics. On the other hand, the high-temperature part of the curve is classical. In order
to see the difference between the present model and the classical Einstein result in more detail, in the inset,
we plot this difference for π = 0 and π = 1, as well as for two Grüneisen parameters: γ = 1 (dashed line) and
γ = 2 (solid). CV (π) corresponds to the specific heat of the present model, whereas CV (ε = 0) is the Einstein
result, when ω does not depend on V . It is worth noticing that for π = 0 some small increase of the specific
heat occurs for temperatures T > 0. Similarly to the entropy, the specific heat is only weakly sensitive to the
external pressure π. In particular, one can see that the pressure of π = 1 causes a small decrease of CV at some
restricted range of low temperatures. When the Grüneisen parameter increases all the above changes become
enhanced.

3.2 A comparison with experimental data for solid argon

For solid argon, which forms FCC structure below the melting temperature of 84 K, the Debye tempera-

ture is ΘD=85 K. From the approximate formula Θ0/ΘD = (π/6)
1/3

, which can be derived on the basis of
Ref. [2], the Einstein temperature, Θ0=68.51 K, can be estimated. Hence, on the basis of eq.(28) we find that
the A0-constant amounts to A0 = 0.04729 × 10−20 J. On the other hand, the isothermal compressibility at
zero temperature, κ0, can be found from the experiment [39], and for polycrystalline samples it amounts to
κ0 = 4.1× 10−10Pa−1. The volume per atom can be estimated as V0/N = 36.383× 10−30 m3. The Grüneisen
parameter can be taken as a mean value of the experimental data from various temperature ranges, [39] which
yields γ = 2.5. Having obtained the data given above, on the basis of eq.(46) the ratio B/A0 can be estimated,
yielding B/A0 = 160. The other elastic energy constants, which are of higher order, i.e., C and D, can be
treated as the theoretical fitting parameters. We found that the optimal fit to the experimental data (taken
from table III, page 561 of Ref. [39]) is obtained for C/A0=1250 and D/A0=5000, valid for ε > 0. Taking into
account the above set of parameters, we have calculated ε, κT , αp and CV for solid argon in the full temperature
range 0 < T < 84 K. To complete the comparison, we supplemented the results with two example isotherms.
Since the isotherms cover the range of both positive and negative deformation ε, we decided to allow some
asymmetry in our model elastic potential. Thus, for ε < 0 we adopted the anharmonic parameter value of
C/A0=3000, i.e. the potential is more steep in this range. The results are presented in Figs.9-13 by the solid
lines, whereas the experimental data [39] are shown by the open symbols. In addition, the figures have been
supplemented with the smoothed experimental data from the Refs. [40, 41, 42].

In Fig.9 the calculation of elastic deformation ε vs. absolute temperature T is presented. The derivative
of elastic deformation over the pressure, i.e., the isothermal compressibility coefficient, κT , is plotted vs. T
in Fig.10. It can be noted that in both figures (9 and 10) the experimental dependencies are nonlinear, in
agreement with the present theory. In turn, the thermal expansion coefficient, αp, at constant pressure (p = 0)
is plotted in Fig.11 for the same temperature range as in Figs. 9 and 10. Finally, the molar specific heat CV
at constant V is presented in Fig.12. For comparison, in Fig.12 the dashed line is plotted for the pure Einstein
model when we impose the constraint ε = 0.

Our calculated isothermal compressibility, κT , can be related to the adiabatic compressibility, κS , via the
formula:

κT = κS (1 + αpγT ) . (50)

It can be checked that the above formula is equivalent to the Grüneisen equation (48) which is also satisfied
in our case. As pointed out in Ref. [39], the values of κS and κT can be measured independently; κS by
the ultrasonic method from isentropic sound velocity, and κT by the piston-displacement method of Bridgman.
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Figure 9: Elastic deformation ε vs. absolute temperature T for solid argon. Solid line - our calculation, dashed
line - smoothed experimental data after Ref. [40], the open symbols - experimental data after Ref. [39].

Figure 10: Isothermal compressibility coefficient κT vs. absolute temperature T for solid argon. Solid line -
our calculation, the open symbols - experimental data after Ref. [39].

Figure 11: Volume thermal expansion coefficient αp at constant pressure p = 0 vs. absolute temperature T
for solid argon. Solid line - our calculation, dashed line - smoothed experimental data after Ref. [40], the open
symbols - experimental data after Ref. [39], the filled symbols - experimental data after Ref. [42].
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Figure 12: Molar specific heat CV at constant V vs. absolute temperature T for solid argon. Solid line - our
calculation, dashed line - smoothed experimental data after Ref. [40], the open symbols - experimental data
after Ref. [39]. The dashed-dotted line correspond to the calculation with constraint ε = 0, i.e., for the pure
Einstein model.

Figure 13: Isotherms for solid argon (dependence of elastic deformation on external pressure) for two selected
temperatures. Solid lines - our calculation, dashed lines - smoothed experimental data after Ref. [41].
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Using the formula (50) a satisfactory agreement between those two measurements has been obtained in Ref. [39].
Such consistency directly transfers to our calculations, therefore in Fig.10 only κT curve has been presented.

Regarding the isothermal compressibility κ0 (at p = 0, T = 0) we adopted here the value κ0 = 4.1 ×
10−10 Pa−1 for polycrystalline samples after Dobbs and Jones [39]. On this basis the classical (atomic volume)
bulk modulus, B′, can be estimated at T = 0 K: B′ = 1/κ0 = 0.244 × 1010 N/m2. On the other hand, for
single cubic crystals the bulk modulus can be obtained from the formula [2] B′ = (C11 + 2C12) /3, if the elastic
constants C11 and C12 are known. These constants for argon single crystals have been deduced from measured
isentropic sound velocity [43]. The values extrapolated to T = 0 K are: C11 = 4.39 and C12 = 1.83 in units
of 109 N/m2 [43]. Hence, the bulk modulus B′ obtained on this basis is B′ = 0.268 × 1010 N/m2. It can be
concluded that this value of B′ for single crystal is about 10% larger than for polycrystalline samples given in
[39].

In the Fig. 13 two selected isotherms are shown (low- and high-temperature one), presenting elastic defor-
mation ε as a function of external pressure p. It is visible that using a model asymmetric potential, a good fit
to experimental data in whole pressure range studied is obtained, both for high- and low-temperature results.
This emphasizes the pronounced importance of the exact form of the static lattice potential for pressure studies,
since the deformations here exceed 10%. The selected potential provides reliable description for pressures up
to 10 kbar. In light of the assumption that our static elastic potential originates from the expansion at the
point T = 0 and p = 0, further adjusting the potential would improve the consistency between calculations and
experimental data for higher pressures.

It can be concluded, on the basis of Figs. 9-13, that the agreement between calculated lines and the
experimental data is quite satisfactory. One should take into account that all these curves have been calculated
selfconsistently for the same set of parameters, as described above in this subsection. It can be supposed that the
fitting could even be better if we would allow the Grüneisen parameter to vary with temperature and pressure,
as it has been suggested from the experimental measurements [39, 44]. As far as the specific heat is concerned,
the new result (solid line) differs only insignificantly from the Einstein result (dashed), and the difference is
mainly noteworthy at high temperatures. However, it should be noted that the dashed line in Fig.12 is the only
result of the pure Einstein model which can be compared with all these experimental data. The full description
of temperature dependencies of remaining quantities, such as ε, κT and αp has been possible in the improved
approach to the Einstein model, when the equation of state (31) is taken into account.

3.3 Final remarks

In the present paper a simple combination of the Einstein and elastic models of solid state is presented. First of
all, the dependency of frequency of quantum oscillators on the volume has been introduced in a simplified way
via Grüneisen assumption. Simultaneously, the elastic properties of the crystal have been taken into account
via classical Hamiltonian, containing anharmonic terms.

An idea that the free-energy is a sum of several components has been presented, for instance, in the book of
Wallace [22]. However, we have shown that exploitation of this idea led us to the new form of the equation of
state (31). Contrary to the Birch-Murnaghan equation of state, which presents only isothermal description [22],
in our equation the temperature T plays a role equivalent to the rest of variables, i.e., p and V . In particular,
the thermal expansion coefficient, as well as the isothermal compressibility have simultaneously been derived
from this new equation of state. It is well-known that these quantities could not be inferred from the sole
Einstein model. On the other hand, our equation of state includes also the pressure resulting from expanding
quantum oscillators. Moreover, comparing our method with the papers based on the Wallace approach, one
should notice that one of our anharmonic parameters in the static potential, namely A, is not independent,
but has been related to the Einstein temperature (via Eqs. 29 and 30). As we pointed out, such relationship
assures that the equilibrium condition for the total free energy at p = 0 and T = 0 is satisfied and the system
of quantum oscillators becomes stable. When this point is not discussed, the functional form of the static
lattice energy can also be adopted in the form given in Ref. [30] (after Vinet et al.). That form is much more
complicated than our polynomial approach, nevertheless it has successfully been applied for very high pressures.

The present method requires several constant parameters, such as: the Einstein temperature, isothermal
compressibility (or the volume elastic modulus) at the absolute zero temperature, as well as the Grüneisen
parameter, which should be taken from experiment.

The region of applicability of the model (its temperature and pressure range of validity) is mainly connected
with the number of terms which are taken into account in the polynomial form of elastic Hamiltonian (2). This
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form is based on the assumption that the equilibrium central point is ε = 0 for T = 0 and p = 0. Thus, the
theory is best applicable for the expansion around this equilibrium. However, as we have seen on the example
of solid argon, merely first four terms were sufficient to describe deformation ε in a wide range; starting from
ε ≈ 0.1 (near the melting temperature and p = 0, Fig.9) down to ε ≈ −0.16 (for T = 4 K and p = 10 kbar,
Fig.13). Of course, validity of the model for lower values of ε < 0 (for very high pressure, where anharmonic-
ity of static potential plays a role) would require higher order terms in (2). One should also remember that
our assumption concerning the space filling coefficient (q = const.) would not be fulfilled at extremely high
pressures. As far as the vibrational anharmonic effects are considered, they all are taken into account by the
effective Grüneisen parameter γ. We think that the approach is useful in the range of temperatures up to the
melting point. In conclusion, the presented formulation allows for a complete thermodynamic description of
the system in a relatively wide range of external pressure and temperature. Our considerations are related to
the quasistatic processes. Therefore, the shock-wave experiments cannot be described within this model.

It should be noted that the method is relatively simple, gives analytical form of the equation of state, and
therefore it can serve as a first approximation for more advanced approaches. For instance, in the prototype
calculations we have used only single variable ε for description of the volume elastic deformation. However,
it seems possible to generalize the approach for anisotropic deformations and anisotropic external pressures,
involving also the Poisson coefficient. The presented method can be potentially extended basing on the Debye
approximation, in which the linear dispersion relation for collective excitations together with the proper density
of states are taken into consideration. For instance, in Ref. [30] the vibrational free energy has been taken into
account in the high temperature Debye model. In that approach each moment of the density of states function
requires a separate Grüneisen parameter, which makes the method much more complicated. On the other
hand, for metallic systems the electronic part of the free-energy should also be included [30]. However, such
extensions of the method need further studies and should be a subject of separate assignment.

The paper has been partly supported by the grant VEGA 1/0431/10.
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