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12 February 2013

Abstract

A form of an indirect Ruderman-Kittel-Kasuya-Yosida (RKKY)-like coupling between magnetic on-
site impurities in armchair graphene nanoribbons is studied theoretically. The calculations are based on
a tight-binding model for a finite nanoribbon system with periodic boundary conditions. A pronounced
Friedel-oscillation-like dependence of the coupling magnitude on the impurity position within the nanoribbon
resulting from quantum size effects is found and investigated. In particular, the distance dependence of
coupling is analysed. For semiconducting nanoribbons, this dependence is exponential-like, resembling the
Bloembergen-Rowland interaction. In particular, for metallic nanoribbons, interesting behaviour is found
for finite length systems, in which zero-energy states make an important contribution to the interaction. In
such situation, the coupling decay with the distance can be then substantially slower.
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1 Introduction

Graphene, being an unique two-dimensional material [1, 2], opens new possibilities for contemporary physics and
technology. One of the challenges is finding route to the spintronic applications of graphene and its derivatives [3,
4], what motivates experimental and theoretical studies of their magnetic properties. In particular, interactions
between magnetic moments introduced to graphene lattice focus considerable interest. One of the known
mechanisms of interaction between magnetic moments embedded in the host material is the Ruderman-Kittel-
Kasuya-Yosida (RKKY) mechanism [5, 6, 7] of indirect coupling mediated by the charge carriers. The form of
RKKY interaction, originally derived for bulk, metallic, three-dimensional systems, is sensitive to the geometry
and dimensionality of the underlying system and closely connected with the electronic structure of the host
material. This opened room for studies of RKKY coupling in low-dimensional systems [8, 9, 10, 11, 12, 13, 14,
15], in particular to mention thin films [16, 17, 18] at the crossover between the three- and two-dimensions, or
for pseudo-one-dimensional systems [19]. In particular, in metallic, two-dimensional systems, RKKY coupling
has been predicted to decay with the distance according to JRKKY ∝ 1/r2. However, the peculiar dispersion
relation for charge carriers in monolayer graphene [20], being a zero-gap semiconductor, together with a bipartite
nature of the underlying crystalline lattice with dominant nearest-neighbours electron hopping, causes the
indirect RKKY coupling in graphene to differ from that found in 2D metals. The indirect RKKY exchange in
graphene attracts considerable attention [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48]. It has been verified, that its asymptotic distance dependence is JRKKY ∝ 1/r3

for monolayer graphene (somehow like in a three-dimensional system). Moreover, in undoped graphene, the
coupling between magnetic impurities in the same sublattice is always ferromagnetic, while for the impurities
in different sublattices, it is antiferromagnetic.

One of the promising building blocks for graphene spintronics are graphene nanoribbons. These nanostruc-
tures offer highly tuneable electronic structure, vitally dependent on their geometry, mainly the edge form. In
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general, the form of the edge of graphene and similar structures is known from early experimental and theo-
retical studies to shape electronic states in the vicinity of the Fermi level (e.g. [49, 50]). Besides zigzag-edged
nanoribbons, offering expected spontaneous edge magnetic polarization and thus concentrating the interest,
also armchair-edged graphene nanoribbons (AGNRs) attract much attention (e.g. [51, 52, 53]). The interest
in properties of AGNRs is especially motivated by, for example, recent achievements in fabrication of narrow
nanoribbons characterized by well-controlled width [54, 55]. On the other hand, the form of RKKY interaction
in metallic nanoribbons with quadratic dispersion relation for the charge carriers has been also a subject of a
current study [19] which emphasized the possibility of control over the coupling due to its position dependence.
The last feature, resulting from the pronounced quantum size effects, combined with an uniqueness of graphene,
can be expected to promote interesting behaviour of RKKY interaction in graphene nanoribbons. Moreover,
in general the effects of dimensional cross-over from quasi-one-dimensional nanoribbons to two-dimensional
infinite monolayer appear interesting. This serves as motivation for computational studies of indirect coupling
between magnetic impurities in armchair graphene nanoribbons presented in the paper.

2 Theory

The basis of the calculations is the choice of a finite graphene system. The study was performed for a finite
system, schematically depicted in Fig. 1. The unit cell used in calculations contained N carbon atoms at the
zigzag edge and the number of such zigzag atomic rows in armchair direction was equal to M , so in total the
structure contained M · N atoms. Empty and filled circles allow to distinguish between the sites belonging
to two sublattices. The row of atoms extending along armchair direction is composed of subsequent nearest-
neighbour pairs (with the nearest-neighbour distance equal to a0) and can be called a dimer line [56]); the
system contains thus N such dimer lines. The corresponding length of the nanostructure was L = 3a0M/2,
while its width was equal to W =

√
3a0 (N − 1) /2. Periodic boundary conditions were used to connect the

zigzag edges, so that for the zigzag atomic rows M + 1 ≡ 1. The usage of such a geometry had two aims, first
one being to simulate the behaviour of the infinite length AGNR, the second one being to investigate some
important finite-size effects discussed further. Only the nanoribbons for odd values of N were considered, since
the interest was focused on the AGNRs possessing the symmetry axis. The symmetry axis of the AGNR was
described by δ = 0, while the armchair edges are shifted by δ = ± (N − 1) /2 dimer lines from the center.

The values of M used in the calculations of distance dependences of the coupling (Figs. 3,5) were M = 402,
while the rest of results, apart from those illustrated in Fig. 4(b) was obtained using M = 202. It has been
verified that in absence of zero-energy states participating in indirect coupling (see further discussion), such
a values of M were large enough to guarantee the convergence of the results to the limit of infinite-length
nanoribbon. Anticipating the further analysis, let us mention that the largest distance between the magnetic
impurities considered in this paper was r/a0 = 27, so that the padding around the impurity pair in the armchair
direction was at least more than 10 times larger than that distance (see the results and discussion by Black-
Schaffer [37], demonstrating that the padding as twice as the distance between the impurities is sufficient).

The electronic structure of finite AGNRs was modeled using a tight-binding Hamiltonian for pz electrons,
with nearest-neighbours hopping t, supplemented with an Anderson-Kondo impurity term [37]:

H = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ + c†j,σci,σ

)

+
J

2
Sz
a

(

c†a,↑ca,↑ − c†a,↓ca,↓

)

+
J

2
Sz
b

(

c†b,↑cb,↑ − c†b,↓cb,↓

)

, (1)

where 〈i, j〉 denotes summation over nearest neighbours in the lattice, while σ = ↑, ↓ is the electron spin.
The coupling between on-site impurity spins Sa and Sb (having the magnitude of S = 1 for simplicity

and located at sites a, b) and the electron spins at the same sites is parametrized by the energy J , called
further a contact potential. In all the further results, except those presented in Fig.4(a), the value of J/t = 0.1
was accepted. We note that the coupling is insensitive to the sign of J . Our approach yields the reduced
Hamiltonian Hab = −JRKKY Sz

a S
z
b for impurity spin pair. If isotropic Heisenberg coupling between impurity

spins and charge carrier spins would be used, the resulting Hamiltonian would be Hab = −JRKKY
Sa · Sb,

with the exchange coupling integral JRKKY having exactly the same value as for the Ising case. This stems
from the fact that the tight-binding Hamiltonian of the charge carriers is fully invariant under rotations in
spin space and arbitrary axis can be selected as z axis. Therefore, no anisotropy in spin space emerges in the
RKKY coupling. This has been verified numerically by trial calculations of the exchange coupling integrals
for isotropic Heisenberg coupling. It follows that the assumption of the Ising-like Anderson-Kondo term does
not influence the resulting value of JRKKY and such a choice was made for the sake of simplicity of numerical
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Figure 1: Schematic view of the nanoribbon system used in the calculations. The solid box encloses the unit
cell of width W and length L, with N carbon atoms at the zigzag edge. The dashed lines enclose a single row
of atoms in zigzag direction; the unit cell is composed of M such rows. Periodic boundary conditions connect
the zigzag edges, so that M + 1 ≡ 1. The symmetry axis of the nanoribbon is marked with a dashed line. Open
and filled circles denote the sites from two sublattices.
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Figure 2: Plot of the charge density associated with zero-energy states which are present in the electronic
structure of metallic AGNR. Empty and filled circles depict the charge density for two distinct zero-energy
states associated with two sublattices. The symmetry axis of the nanoribbon corresponds to δ = 0, while at
the armchair edges δ = ± (N − 1) /2.

3

http://dx.doi.org/10.1088/0953-8984/25/16/166001


This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics:
Condensed Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the
manuscript or any version derived from it. The Version of Record is available online at
DOI:10.1088/0953-8984/25/16/166001.

calculations [46]. In our convention the negative coupling values correspond to antiferromagnetic coupling,
while the positive ones to ferromagnetic coupling.

The Hamiltonian was diagonalized in single-particle approximation, with the help of LAPACK library [57],
yielding a set of electronic eigenenergies ǫi sorted in ascending order. The ground state energy (at T = 0) for the
system depended on the orientation of the impurity spins and was expressed by a sum of M ·N least eigenvalues,
E (Sa, Sb) =

∑M·N
i=1

ǫi. This followed from the half-filling (charge neutrality) condition (one pz electron per
each carbon atom). Then, the indirect coupling constant JRKKY was calculated from the expression [37, 46]:

2S2JRKKY = E (Sa = 1, Sb = −1) − E (Sa = 1, Sb = 1) . (2)

Note that the approach used allows for non-perturbative determination of indirect exchange integrals.
Let us clarify here that we refer to the resulting indirect coupling as RKKY interaction. In general, as shown

further, the coupling may contain a highly significant contribution resulting from the mechanism which can be
explained by means of first order perturbation calculus, in contrast to the original RKKY mechanism involving
a second-order process. However, for brevity we call the total resulting coupling the RKKY coupling[46].

We mention that due to lack of free zigzag edges in the assumed geometry of AGNRs, no additional zero
energy states localized at zigzag edges are introduced this way to the electronic spectrum.

The electronic structure of the AGNRs within nearest-neighbour tight-binding approximation has been
extensively studied in the works of Wakabayashi et al. [58, 59, 60]. One of the results was that the AGNRs
can be either metallic (M AGNRs), for widths N = 3n − 1 (n = 1, 2, . . .), or semiconducting (SC AGNRs),
for N = 3n and N = 3n + 1. The SC AGNRs have an energy gap inversely proportional to the width. This
behaviour was fully confirmed in our calculations. Let us note that the two series of SC AGNRs, 3n and 3n+1,
are inquivalent, so that two SC AGNRs from different series can display some variation in the properties other
than resulting merely from the different gap value. Such effects were for example predicted for excitonic spectra
[56, 61, 62]. As N → ∞, the properties of AGNRs tend to that of an infinite graphene monolayer, being a
zero-gap semiconductor. Let us emphasize that in our study we focus our interest only on the AGNRs with
symmetry axis, therefore, the allowed values of N are only odd.

Let us focus on metallic AGNRs. In absence of the magnetic impurities, the electronic structure of metallic
ANGRs is characterized by the existence of two zero-energy states (each one with an additional two-fold spin
degeneracy). The distribution of the charge density associated with both states is depicted in Fig. 2 for an
AGNR with N = 11. First let us note that each of the states involves one sublattice only. Then, it follows
that the wavefunction amplitudes of both zero-energy states vanish for specific dimer lines, namely for that
characterized by the distance from AGNR center equal to δ = 3d, d = 0, 1, . . .. The number of such sites in
our finite system is MN/3. In particular, the wavefunctions always vanish along the AGNR symmetry axis.
The partial charges at the remaining MN/3 lattice sites of each sublattice are distributed uniformly and the
probability of finding an electron is then equal to n0 = 3/ (MN) for each of these sites, as follows from the
normalization condition. Especially, the wavefunction amplitudes take nonzero values at the AGNR edge and
for the neighbouring dimer line. The form of the electron wavefunctions for AGNRs has been also discussed
recently by Sasaki et al. [63] (see the charge density for Dirac singularity zero-energy states sketched in the
Fig. 1(b) in the Ref. [63], however, for a nanoribbon with even N). The wavefunction behaviour is a result
of the interference of the electron wavefunctions incident and reflected from the armchair edge. The presence
of similar interference effects has been also confirmed experimentally by means of STM/STS studies of the
graphene sheets in the vicinity of the armchair edge[64, 65].

3 Results

In this section we present the results of numerical calculations performed for our system.
One of the consequences of the peculiar Dirac-like dispersion relation for charge carriers in graphene mono-

layer is that the asymptotic distance dependence of the RKKY coupling between magnetic impurities is 1/r3 (see
e.g. [24, 26, 37]), contrary to 1/r2 characteristic of two-dimensional metallic systems [11, 9, 10]. On the other
hand, for metallic one-dimensional metallic systems the asymptotic dependence on 1/r is expected[8, 9, 13, 12].
Let us then analyze the distance dependence trends for the indirect coupling between magnetic impurities in
AGNRs. The distance dependences are presented, for representative cases of three AGNRs with the widths
of N = 7, 9 and 11, in the Fig. 3. The separate plots are presented for two semiconducting AGNRs and for
a metallic AGNR; on the other hand the coupling is also plotted separately for the impurities in the same
sublattice and in different sublattces. Let us note that in graphene, due to the bipartite nature of its lattice,
the coupling between impurities in the same sublattice is always ferromagnetic, while for the impurities in
different sublattices it is antiferromagnetic [42]. This rule is also obeyed in the case of AGNRs and no terms are
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Figure 3: The distance dependence of an indirect RKKY coupling between magnetic impurities situated in
different sublattices (left) and the same sublattice (right), for two classes of SC AGNRs [(a)-(d)] and M AGNR
[(e), (f)]. Dashed lines denote the results of perturbative calculation after the Ref. [26]. The plots are presented
for various distances of the impurities from the AGNR center, covering the whole range between the center and
the edge of the nanoribbon.
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present in the Hamiltonian to cause its breaking. The coupling energies are depicted in semilogarithmic scale
to illustrate better the dependence ranging over many orders of magnitude, thus the plots present the absolute
values of the couplings. In all the plots, the dashed lines present the results of the perturbative calculation of
the RKKY coupling energy for armchair direction in monolayer graphene for J/t = 0.1 performed using the
Eq. (19) and Eq. (26) in the Ref. [26] (for the same and for different sublattices, respectively).

First let us observe that for semiconducting AGNR with N = 7, the coupling tends to vanish with the
distance between impurities much faster than 1/r3 expected for graphene monolayer. This can be observed
both for different sublattices [Fig. 3(a)] as well as for the same sublattice [Fig. 3(b)]. The dependence shows
signs of exponential decay, according to JRKKY ∝ exp (−r/R). This kind of behaviour is observed for every
distance of the impurity pair from the AGNR center, i.e. for every δ; only some magnitude variations are
present. Such an exponential decay is characteristic of the systems which indicate a gap in the electronic
spectrum. For example, it has been mentioned in the Ref. [39] that the gap opening in graphene due to spin-
orbit interactions should lead to such a behaviour. This kind of coupling is also known from the semiconductor
physics as Bloembergen-Rowland coupling [66] mediated by the excited electron-hole pairs. The characteristic
decay distance R is energy gap-dependent and faster decay is predicted for narrower AGNRs with the larger
energy gap. For the next width, N = 9 the AGNR is also semiconducting. Despite the small difference in the
energy gap value, the distance behaviour of the coupling is noticeably different. Namely, the decay with the
distance appears significantly slower.

The situation is very different for the metallic AGNR (studied case of N = 11). From the plots Fig. 3(e),(f),
it can be concluded that the coupling behaves in a manner characteristic of semiconducting systems only for
the impurities distance from the AGNR symmetry axis δ such that δ mod 3 = 0. For the remaining distances
δ, including especially the impurities at the AGNR edge, the distance dependence is much weaker. As it can be
observed, for different sublattices, the AF interaction tends to vanish quite slowly, and it can be numerically
checked that it follows the JRKKY ∝ 1/r rule. Such a dependence is rather characteristic of metallic-like,
one-dimensional systems [8, 9, 10, 13]. The distance dependence is even more interesting for the impurities at
the same sublattice. Let us observe that the interaction energy, after some initial decrease, is almost distance-
independent. Moreover, the coupling magnitude for this case is greatly pronounced in comparison with the
other cases.

This peculiar behaviour of the indirect coupling can be understood owing to the analysis of the zero-
energy states wavefunctions for AGNRs. Let us consider first the case of two magnetic impurities in different
sublattices, situated such that δ mod 3 6= 0. In such a situation, each one of the two zero-energy states is
occupied by a single electron, with the spin orientation which minimizes the value of the term Sks

z
k present

in the Hamiltonian Eq. (1). The first-order perturbation calculus correction to the energy of each state comes
from the interaction with one impurity only and is equal to ∆E0 = − 1

2
n0S |J |, thus does not depend on the

relative orientation of both impurity spins. Therefore, in such a situation zero-energy states give no first-order
contribution to the indirect coupling. Let us also note that the zero-energy state is two-fold degenerate (not
including spin degeneracy). The matrix elements of the Anderson-Kondo term taken between two different
zero-energy states vanish. As a consequence, the basis of the zero-energy states associated each with different
sublattice constitutes a proper basis for first-order perturbation calculus including the degeneracy. The second-
order contribution emerges due to non-vanishing matrix elements of the Anderson-Kondo term taken between
one of the zero energy states and other states.

The situation is quite different when both magnetic impurities are situated in the same sublattice. If the
impurity spins are aligned ferromagnetically, the zero-energy state belonging to this sublattice is occupied by
a single electron with the spin direction which minimizes its energy. The remaining state (belonging to the
other sublattice) is also occupied by a single electron, but it is unperturbed and its energy is unchanged. As a
consequence, the first-order correction to the energy is ∆EF

0
= −n0S |J |. On the other hand, it the impurity

spins are polarized antiferromagnetically, the first-order corrections to the energy of the state associated with
their sublattice cancel each other. The other zero-energy state is still unperturbed, and therefore ∆EAF

0
= 0.

Taking in consideration the formula Eq. (2), we obtain the indirect exchange integral associated with zero-energy
states (in first-order perturbation calculus) equal to JRKKY =

(

∆EAF − ∆EF
)

/2S2, what leads to

JRKKY = n0 |J | /2S. (3)

Let us emphasize that this kind of contribution to the indirect coupling is absent when any state is filled
with two opposite-spin electrons, since then the first order corrections to the energy of the state cancel out,
while the second order corrections give rise to an ordinary RKKY indirect coupling mechanism, with interaction
proportional to J2. The first-order mechanism bears some resemblance to double exchange and is somehow
analogous to the ferromagnetic contribution to indirect coupling found in ultrasmall graphene nanoflakes [46].
Due to the proportionality to |J |, it strongly dominates over the typical second-order mechanism for weaker
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Figure 4: (a) The dependence of the indirect coupling magnitude on the value of contact potential J , for the
impurities being 3rd and 4th neighbours, placed in the center or at the edge of a metallic AGNR with N = 11.
(b) The dependence of the indirect coupling magnitude on the length M for metallic AGNR with N = 11, for
the impurities being 3rd and 4th neighbours, placed in the center or at the edge.

contact potentials J . It is worth emphasizing that, despite the linear dependence on the contact potential, the
coupling is insensitive to the sign of J .

In order to illustrate this, let us study the dependence of coupling magnitudes on the interaction energy
J between the localized spins and charge carrier spins. The results of the calculations are depicted in double
logarithmic scale, in the Fig. 4(a), for a selected metallic AGNR with N = 11. The magnetic impurities were
placed either at the edge or on the symmetry axis and belonged to the same or different sublattices. For the
impurities in different sublattices, it is visible that the coupling energy JRKKY is proportional to J2. This
means that the indirect interaction can be described using the second-order perturbation calculus (which is
typically used to study indirect, charge-carrier mediated coupling in various systems). The situation is different
when the impurities belong to the same sublattice. Then, the quadratic dependence of JRKKY on J is conserved
for the impurity pair in the AGNR center. In contrast, the interaction between edge impurities shows linear
dependence of magnitude on |J |. This indicates that such an interaction contains a dominant contribution
describable by means of first-order perturbation calculus, as it has been pointed out above with reference to the
zero-energy states. The interaction magnitudes agree with those calculated from the Eq. (3). In the studied
range of J values, the coupling between the edge impurities is at least an order of magnitude stronger than for
center impurities.

It is of particular importance that the first-order contribution to the coupling is inversely proportional to
the number of carbon atoms in the AGNR, thus it vanishes for infinite length of the nanoribbon and essentially
constitutes a finite-size effect. This is a result of existence of just two zero-energy states for the whole system,
for which n0 = 3/ (M ·N).

Let us discuss the important point concerning the determination of indirect coupling constants from the
total energy calculations in systems with periodic boundary conditions. In such a case, the calculated exchange
energy contains some contribution from the coupling of the impurity pair with other impurities periodically
repeated due to the boundary conditions [37]. If the interaction decays fast enough with the distance, a
sufficient padding around the impurity pair can eliminate this issue [37]. However, when the coupling is found
distance-independent, the problem may arise whether the calculations are trustworthy. As explained before,
such coupling in our system arises from the contribution of the zero-energy states filled with single electron,
thus exhibiting uncompensated spin polarization. This polarization is uniform in the direction along the edge
(see the charge density in Fig. 2). The first-order perturbative contribution to indirect coupling originates
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Figure 5: Distance dependence of indirect coupling magnitude for 4 selected metallic AGNRs (of widths from
N = 5 to N = 23), for impurities in different sublattices (left) and in the same sublattice (right), for impurities
placed in the center and at the edge of the nanoribbon. Dashed lines denote the results of perturbative
calculation after the Ref. [26]. The plots are presented for various distances of the impurities from the AGNR
center, covering the whole range between the center and the edge of the nanoribbon.

from the correction to the energy of this state due to the presence of an impurity pair, unlike the second-order
contribution which emerges owing to additional spin polarization created around one impurity and sensed by
other impurity. Therefore, the first order contribution is not plagued by the interaction among periodically
repeated impurities. It can be verified by the observation that the calculated exchange energy values in this
case are in agreement with Equation 3, which includes only unperturbed charge density and is certainly free
from the mentioned problem.

The importance of the finite length of AGNR for the mentioned ferromagnetic contribution to the coupling
can be studied on the basis of Fig. 4(b). This figure presents the indirect coupling magnitude as a function
of the length M for metallic AGNRs having the width of N = 11, for impurities in the same or in different
sublattices, in AGNR center or at the edge. It is clear that for centrally placed impurities and as well for
edge impurities in different sublattices, the coupling energy is independent on AGNR length for M exceeding
a few tens (which means achieving the limit of an infinite system size and in this particular case corresponds
to L/W equal to a few). In contrast, for edge impurities in the same sublattice, the dependence of the type
JRKKY ∝ 1/M is clearly observed. Note that even for M = 1000 (so that for L/W over 100), the coupling
for edge impurities exceeds the one for center impurities by more than an order of magnitude. Such a slow
decrease establishes the importance of this contribution to indirect RKKY coupling.

The evolution of distance dependence of indirect coupling when the metallic AGNR width is increased can
be studied in Fig. 5. For impurities located in the center of the AGNR [Fig. 5(a),(b)], the coupling decay is
faster than 1/r3 for all the illustrated AGNR widths, but the slope decreases gradually tending to reproduce
the behaviour characteristic of an infinite graphene monolayer. This kind of evolution can be expected for
semiconducting systems with a gap decreasing with the increase of the ribbon width. Recall that for the
AGNR center, the zero-energy states are not involved in an indirect coupling. Totally different situation is met
for the impurities at the AGNR edge, for which position zero-energy states can contribute. For edge impurities
in different sublattices [Fig. 5(c)], the 1/r dependence is characteristic of the thinnest AGNR case (what, as
mentioned, resembled RKKY coupling behaviour for one-dimensional metallic systems). It can be verified by
plotting the dependence in double logarithmic scale (not shown) that the power decay law of coupling takes place
for all studied widths of AGNR, however, the exponent varies from -1 toward -3 when N increases. Therefore, the
distance behaviour of RKKY coupling evolves toward the expected behaviour for infinite graphene monolayer,
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Figure 6: The coupling between (a) 3rd neighbour impurities (b) 4th neighbour impurities as a function of the
AGNR width N . The coupling magnitudes are presented for the center and edge of the AGNR. Values for
metallic AGNRs and two kinds of semiconducting AGNRs are depicted with different symbols.

for which JRKKY ∝ 1/r3 is predicted. Moreover, the magnitude of indirect coupling is significantly reduced
as a result of increase of the width. On the other hand, when the edge impurities are located in the same
sublattice [the case illustrated in Fig. 5(d)], the influence of the AGNR width on the coupling magnitude is
most pronounced. Under such conditions a first-order contribution to the coupling from a zero-energy state
is present, but its value decreases inversely proportionally to the AGNR width (i.e. to the number of the
lattice sites in the AGNR whilst the length is kept constant). For all the studied AGNR widths, the distance
dependence of the coupling is very weak for larger distances.

In order to analyse the width dependence on the coupling for the fixed distance between the impurities, let
us focus on the case of the 3rd neighbours (situated in different sublattices) and the 4th neighbours (the same
sublattice). These cases were illustrated in the Fig. 6, which presents the dependence of the coupling energy
JRKKY for J/t = 0.1 on the nanoribbon width (proportional to the number of atoms at the zigzag edge N).
Fig. 6 shows the coupling between the impurities being the 3rd neighbours, situated either on the symmetry
axis or at the AGNR edge. It is visible that a pronounced dependence of the coupling energy on the AGNR
width occurs, with an oscillatory envelope. The oscillations tend to vanish for wider AGNRs. A period equal
to 3 is visible in the changes vs. N , what corresponds with the width dependence of the electronic structure of
AGNRs, as studied using the tight-binding model by Wakabayashi [58, 59, 60]. The pronounced quantum size
effects in RKKY coupling magnitude follow this rule. It can be also deduced from the calculations for further
neighbours that the oscillations envelope vanishes slower with the width for more distant impurities. Fig. 6(b)
depicts the case of the impurities being the 4th neighbours, at the edge or in the center of the AGNRs. The
quantum size effects for the impurity pair in the center resemble much ones observed for the previous case, with
the same period of 3. The situation is much different for the edge impurities. There, a strong enhancement of
the ferromagnetic coupling is observed each time when N corresponds to the metallic AGNR. The origin of this
coupling has been previously discussed. Let us observe that the energy of this coupling for metallic AGNRs
varies according to JRKKY ∝ 1/N + const., in agreement with the described mechanism. The quantum size
effects for AGNRs were already studied for example for the excitonic spectra [56, 61, 62].

Finally, let us concentrate on the variations of the coupling magnitude for selected impurity pairs for
various pair distances δ from the AGNR symmetry axis. Such calculation results are presented in Fig. 7. For
the 1st neighbours [Fig. 7(a)], the coupling behaves similarly for metallic and semiconducting AGNR, indicating
pronounced oscillations while moving away from the symmetry axis towards the edge. In the vicinity of the edge
the variations gain particularly large magnitude. This distribution of the RKKY coupling energies across the
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Figure 7: The dependence of the indirect coupling on the distance of the impurity pair from the AGNR center,
plotted for the impurities being 1st neighbours (a) and 2nd neighbours (b), for two selected AGNRs - a SC one
and a M one.

width of an AGNR is similar to Friedel oscillations, which are ubiquitous in numerous physical properties of the
systems with boundaries (e.g. [67, 68]). For the 2nd neighbours [Fig. 7(b)], the difference between metallic and
semiconducting AGNR is clearly emphasized. For SC AGNR, the dependence of coupling magnitude resembles
the Friedel oscillation-like picture from Fig. 7(a). On the contrary, due to the existence of the mechanism
enhancing the ferromagnetic coupling with the help of the zero-energy state in M AGNR, the interaction is
strongly pronounced for δmod3 6= 0 (as explained before). Thus, the coupling energy is greatly pronounced
except at that atomic rows for which the zero energy state charge density vanishes. Let us note here that this
enhancement would decrease in magnitude for longer AGNRs.

4 Final remarks

In the paper, the indirect (RKKY-like) coupling between on-site magnetic impurities localized in an armchair
graphene nanoribbon has been studied. The non-perturbational method, based on the total energy calcu-
lation, allowed for capturing not only the usual RKKY mechanism attributed to second-order perturbation
calculus, but also a first-order mechanism. It is worth emphasizing that the magnitude of the indirect RKKY
coupling between magnetic impurity spins in AGNRs is strongly dependent on the location of the impurities
in the nanoribbon, and the coupling energy exhibits pronounced oscillatory behaviour resembling the Friedel
oscillations.

We found that when the indirect coupling is of typical origin, its distance dependence is predominantly
of exponential kind, similar to Bloembergen-Rowland coupling in gapped systems. This kind of behaviour
appears also for metallic AGNRs when zero-energy states do not give contribution. On the contrary, the first-
order mechanism becomes operative for the electronic states occupied only by a single electron, which can
be formed in metallic nanoribbons. Due to a peculiar form of the wavefunction for this states, the leading
contribution to indirect coupling can be either slowly decaying (one-dimensional metallic-like in character) for
different sublattices, or constant for the same sublattice. The mentioned effects are inevitably connected with
a finite size of the system since their presence is owing to the two zero-energy states only. However, even for
considerably large length to width ratio for AGNR, they could give a noticeable contribution to the coupling. It
could be worth noticing that the involvement of zero energy states in charge carriers mediated coupling implies
the large sensitivity of the interaction to the number of charge carriers in the system. This feature in principle
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might open the door to control over the coupling sign and magnitude in AGNRs and may stimulate further
studies of such systems. On the other hand, also the influence of external fields on the system might be of
interest.

In our considerations we focused our attention on the symmetric AGNRs, for odd N values, for some
simplicity of description. However, it should be pointed out that fully analogous behaviour is expected for the
asymmetric AGNRs, characterized by even N values (which also can demonstrate metallic or semiconducting
properties). The full discussion of the electronic structure of both kinds of AGNRs within tight binding
approximation can be found in [58, 59, 60]. In particular, the zero-energy states are also present in asymmetric
metallic AGNRs and exhibit a similar spatial pattern (see Fig. 1(b) in the Ref. [63] prepared for a nanoribbon
with even N). The principal difference would consist in excluding the case of δ = 0 (i.e. the dimer line at the
symmetry axis absent for even N) with the remaining qualitative conclusions unchanged.

Finally, let us note that the presence of zero-energy degenerate states is characteristic of a wider class of
carbon nanostructures (e.g. [69]) and thus such effects may not be limited to the system studied here.

The computational support on Hugo cluster at Department of Theoretical Physics and Astrophysics, P. J.
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