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The diluted anisotropic Heisenberg ferromagnet is considered in the pair approximation. The structural
short-range-order, described by the Warren-Cowley parameter, is taken into account. In the presence of inter-
action anisotropy, the influence of dilution and structural correlations on the phase diagrams is studied. In
particular, for the model in question the critical concentrations and Curie temperatures are calculated for
exemplary two-dimensional and three-dimensional lattices.
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I. INTRODUCTION

The studies of model diluted magnetic systems have al-
ready a long history.1–8 Various magnetic systems have been
studied, first of all the dilute bulk materials1,7,9 but also the
ternary alloys10 and thin films8 as well. In these investiga-
tions, numerous approximate methods have been employed,
the main of which being the molecular-field approximation
�MFA�,10 effective-field theory �EFT�,5,6,9,11,12 Bethe-Peierls-
Weiss method,1 or coherent-potential approximation
�CPA�.3,4 For low-dimensional systems, even some exactly
solvable models have been considered.7 The dilute alloys
have also been the subject of Monte Carlo �MC�
simulations,13 mainly from the point of view of percolation
phenomenon. Using all these methods the critical properties
have mostly been studied, for instance, the phase diagrams
and critical concentration; however, other magnetic proper-
ties �susceptibility, magnetic specific heat, etc.� have also
attracted much attention.

In all these classical theoretical works the structural cor-
relations between magnetic atoms have not been taken into
account, i.e., a fully stochastic atomic disorder has been as-
sumed. On the other hand, the presence of structural corre-
lations in diluted systems is a well-documented experimental
fact.14 Recently, the importance of the configurational mag-
netic impurities correlations has been discussed in the mod-
els of diluted magnetic semiconductors.15,16 For instance, it
has been shown in the Ref. 16 how these correlations can be
incorporated into the magnetic theory using the so-called
Warren-Cowley parameters.17 It should be stressed that in the
paper16 only the simplest MFA method has been used. It can
be argued that the MFA method can be sufficient for the case
of the long-range Ruderman-Kittel-Kasuya-Yosida interac-
tion �as considered, for instance, in the Ref. 16� or when the
concentration of alloy components is far from the critical
concentration �as in Ref. 10�. However, for the systems with
short-range magnetic interactions and in the presence of
strong dilution, the MFA method is inaccurate. Suffice it to
mention its inability to predict the nonzero critical concen-
tration.

The simplest method which is superior to MFA and takes
into account the spin-pair thermal correlations in a thermo-
dynamically correct manner, is the pair approximation �PA�.
The advantage of this approach over, for instance, EFT is

such that it enables relatively conveniently to formulate the
fully self-consistent thermodynamics. Moreover, the incorpo-
ration of configurational pairwise correlations into the PA
method, which is intended to be done in this paper, is con-
sistent with this approach.

For the reasons mentioned above, the aim of the present
paper is to include the structural short-range-order �SRO�
parameter into the magnetic theory which is based on the
anisotropic Heisenberg model with the short-range exchange
interactions limited to nearest neighbors. The effect of struc-
tural correlations, which can either lead to the clustering phe-
nomenon or to the opposite tendency �preference for separa-
tion of magnetic atoms�, on the magnetic properties will be
examined. In particular, the influence of the structural
Warren-Cowley parameter on the critical concentration will
be studied in the presence of the exchange interaction aniso-
tropy. The phase diagrams will be discussed for the physical
range of structural correlations, which is characteristic of a
selected crystalline lattice.

The paper is organized as follows: in the next �second�
section the theoretical model is developed for the diluted
anisotropic Heisenberg ferromagnet, within the PA method
with structural correlations taken into account. In Sec. III the
numerical results �phase diagrams� will be illustrated in fig-
ures and discussed. Then some conclusions from those cal-
culations will be drawn.

II. THEORETICAL MODEL

The model Hamiltonian for a diluted ferromagnetic alloy
is assumed in the form of

H = − �
�i,j�

�J��Si
xSj

x + Si
ySj

y� + JSi
zSj

z��i� j − h�
i

Si
z�i, �1�

where the external magnetic field h is directed along the z
axis and the exchange integrals 0�J��J with different J�
yield the interaction anisotropy. By changing J�, for one lim-
iting case �J�=0� we deal with the diluted pure Ising
model whereas for another limit �J�=J� the isotropic diluted
Heisenberg model is obtained. The spin operators
Si

���=x ,y ,z� for S=1 /2 are represented by the Pauli matri-
ces. The occupation operators �i=0,1 describe site dilution
whereas their configurational average ��i�r= p yields the con-
centration of magnetic atoms.
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In order to take into account the thermal correlations of
spin pairs, the PA method18 will be adopted. This method
allows for the Gibbs free-energy calculation and hence the
self-consistent thermodynamic description of a magnet can
be obtained. The application of the PA method in the formu-
lation described in the Ref. 18 is quite straightforward for the
diluted alloy case, when the thermal �¯ �T and configura-
tional �¯ �r averaging of operators is performed according to
the decoupling scheme,

��Si
�Sj

��i� j�T�r = ��Si
�Sj

��T�i� j�r � �Si
�Sj

����i� j�r. �2�

The correlation �Si
�Sj

�� in Eq. �2� is the so-called conditional
thermal average, i.e., the average performed under the as-
sumption that i and j sites are occupied. We have also as-
sumed that the occupation operators �i are not subject to
thermal averaging, which means that the atomic disorder in
the system is of quenched type. The approximation �Eq. �2��
can also be used for the single-site averaging, which yields in
this case the result

��Si
��i�T�r = ��Si

��T�i�r � �Si
����i�r, �3�

where �Si
�� �the magnetization� is the conditional thermal

average.
The above scheme of thermal and configurational averag-

ing can be used not only for Hamiltonian �1�, which leads in
this case to the mean enthalpy of the system ��H�T�r but also
for the mean entropy ���r, as well. For instance, within the
cumulant expansion technique as presented in the Refs. 19
and 20 the mean entropy can be extended here for the diluted
alloy case. It takes the form of the following series:

���r = �
i

��̃i�i�r + �
�i,j�

��̃ij�i� j�r + ¯ , �4�

where �̃i and �̃ij are the local single-site and pair entropy
cumulants, respectively. Using the approximation analogous
to Eqs. �2� and �3�, we obtain in the PA method,

���r � Np�1 +
Nz

2
��i� j�r��2 − 2�1� , �5�

where �1 and �2 are the conditional single-site and pair en-
tropies, respectively. They can be calculated from the corre-
sponding density matrices of the single-atom and pair clus-
ters embedded in an effective molecular field. Namely,

�1 = − kB Tri��i ln �i� �6�

and

�2 = − kB Trij��ij ln �ij� , �7�

where �i and �ij are the single-site and pair density matrices,
respectively. For the occupied sites i , j these matrices can be
presented in the form of

�i =
exp���� + h�Si

z�

2 cosh	1

2
��� + h�
 �8�

and

�ij =
exp���J��Si

xSj
x + Si

ySj
y� + JSi

zSj
z + ��� + h��Si

z + Sj
z���

2	e�J/4 cosh����� + h�� + e−�J/4 cosh1

2
�J��
 , �9�

where � and �� are the effective molecular fields acting on
the single-atom and pair clusters, respectively. N in Eq. �5� is
the total number of lattice sites and z is the number of nearest
neighbors �NN�, i.e., the number of lattice sites on the first
coordination zone, being characteristic of a given crystalline
lattice.

The structural correlations between the magnetic atoms
are conveniently taken into account via the SRO Warren-
Cowley parameter �, which is defined by16

� =
��i� j�r − ��i�r�� j�r

��i�r�� j�r
. �10�

The particular case with �=0 corresponds to the fully sto-
chastic disorder. Hence, the NN occupation correlations are
expressed as

��i� j�r = p2�1 + �� . �11�

The configurational average of the Gibbs free energy for
the diluted alloy can be obtained from the general expression

�G�r = ��H�T�r − T���r. �12�

Combining the method presented in the Ref. 18 with the
decoupling scheme for the occupation operators given above,
the mean Gibbs free energy per one lattice site can be finally
presented in the form of

�G�r

N
=

zp2�1 + ��
2

	G2 − 2
zp�1 + �� − 1

zp�1 + ��
G1
 , �13�

where

G1 = − kBT ln�2 cosh	��� + h�
2


� �14�

and

G2 = − kBT ln�2e�J/4 cosh����� + h��

+ 2e−�J/4 cosh�J�

2
�� . �15�

The molecular fields � and �� acting on the single spin and
the spin belonging to a pair, respectively, are then given by
the expressions

� = zp�1 + ��	 and �� = �zp�1 + �� − 1�	 . �16�

The variational parameter 	 can be determined from the
equilibrium condition

��G�r

�	
= 0 �17�

which leads to the equation

TADEUSZ BALCERZAK AND KAROL SZAŁOWSKI PHYSICAL REVIEW B 80, 144404 �2009�

144404-2



tanh	��� + h�
2


 =
sinh����� + h��

cosh����� + h�� + e−�J/2 cosh�J�

2
� .

�18�

In order to determine 	, Eq. �18� has to be solved numeri-
cally. Relationship �13� for the Gibbs free energy of the di-
luted alloy is a generalization of the corresponding formula
obtained previously for the crystal.18 In particular, for p=1
and �=0 we obtain the former result for the crystalline case.

Having obtained the Gibbs free energy �Eq. �13�� all the
thermodynamic quantities for the diluted alloy can be calcu-
lated whereas the structural correlations are taken into ac-
count via the SRO parameter �. In particular, the phase tran-
sition �Curie� temperature TC can be obtained from the
linearization of the self-consistent Eq. �18�. By setting 	
→0 one gets the formula

exp J

2kBTC
� =

zp�1 + ��
zp�1 + �� − 2

cosh J�

2kBTC
� . �19�

Hence, for the pure Ising model �J�=0� we obtain

kBTC

J
=

1

2 ln�zp�1 + ��/�zp�1 + �� − 2��
, �20�

whereas for the isotropic Heisenberg model �J=J�� the result
is

kBTC

J
=

1

ln�zp�1 + ��/�zp�1 + �� − 4��
. �21�

In turn, from the requirement that TC→0 the critical concen-
tration pc for the diluted alloy can be found. For the case
J�
J, including the pure Ising model, we obtain

pc =
2

z�1 + ��
�22�

and for the isotropic Heisenberg model J�=J the critical con-
centration is

pc =
4

z�1 + ��
. �23�

In general, the temperature phase diagram �for the con-
tinuous phase transitions� is described by the Eq. �19�, which
can be solved numerically. In this equation, the exchange
anisotropy of arbitrary value 0�J��J, the magnetic atom
concentration 0� p�1 and SRO parameter � are taken into
account. The estimation of the physical range of the � pa-
rameter presents a separate problem which has been exten-
sively discussed in the appendix of the Ref. 16. It can be
concluded from the Ref. 16 that in the lowest approximation,
when only two first coordination zones are influenced by
SRO, the � parameter for the first coordination zone has to
fulfil the following 12 inequalities:

− 1 + 2/p − 1/p2 � � � − 1 + 2/p ,

− 1 + 1/p − 1/p2 � � � − 1 + 1/p ,

− 1 � � � − 1 + 1/p2,

z2

z
�1 − 2/p� � � �

z2

z
�1 − 2/p + 1/p2� ,

z2

z
�1 − 1/p� � � �

z2

z
�1 − 1/p + 1/p2� ,

z2

z
�1 − 1/p2� � � �

z2

z
. �24�

where z2 is the number of lattice sites on the second coordi-
nation zone �next-nearest neighbors�. Thus, the acceptable
limitations on � result not only from the atomic dilution but
also from the lattice symmetry. The representative numerical
results will be presented in the next section.

III. NUMERICAL RESULTS AND DISCUSSION

The presentation of the numerical results will essentially
concern two kinds of lattices: the two-dimensional �2D� hon-
eycomb, which possesses the smallest possible number of
NN among the 2D lattices �z=3�, and the three-dimensional
�3D� fcc lattice with the largest coordination number
�z=12�.

Based on the theory presented in the previous section, first
of all the critical concentration pc has been determined vs
SRO parameter �. The results are presented in Fig. 1 for the
honeycomb �Fig. 1�a�� and fcc �Fig. 1�b�� lattices. Two ex-

FIG. 1. The critical concentration as a function of Warren-
Cowley parameter for nearest neighbors, �a� for 2D honeycomb
lattice and �b� for 3D fcc lattice. The bold solid line encloses the
physically allowed range of variables. The dashed line �H� is for
isotropic Heisenberg case whereas the dashed-dotted one �I� is for
anisotropic case.
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treme cases have been compared in Fig. 1, namely, the iso-
tropic Heisenberg model �H� and the anisotropic Ising-type
case for J�
J �I�. On account of the limited area of physi-
cally allowed � parameter �which has been outlined by the
bold borderline in Figs. 1�a� and 1�b��, it is seen that the
range of possible concentrations has also been restricted. In
particular, it is shown in Fig. 1�a� that the isotropic Heisen-
berg model on the honeycomb lattice has the critical concen-
tration outside the allowed range for all values of �. There-
fore, the occurrence of spontaneous magnetization cannot be
expected in that case. It can be mentioned that this result is in
agreement with the Mermin-Wagner theorem21 for 2D sys-
tems without interaction anisotropy. In turn, the Ising model
for honeycomb lattice reveals the ferromagnetic order, being
mainly apparent for positive �, i.e., when the clustering phe-
nomenon takes place. On the other hand, for fcc lattice the
differences between the Ising and Heisenberg models are less
pronounced and both models can exhibit the critical concen-
trations for positive as well as negative �.

It is noteworthy that the critical concentration for the
Ising and Heisenberg models is different for all parameters
�. Such a difference is obviously expected for 2D systems
since the crystalline isotropic Heisenberg model �with p=1�
does not exhibit magnetic ordering at any nonzero tempera-
ture. As mentioned above, this is in accordance with the
rigorous Mermin-Wagner theorem.21 On the other hand, the
crystalline 2D Ising model shows the nonzero phase-
transition temperature, which in turn, results from the exact
Onsager solution.22 Hence the diluted Ising model should
have the critical concentration which is for p
1. However,
it should be noted that there exist some works argumenting
that the critical concentrations of the Ising and Heisenberg
models should be the same.23

In the present method, when the diluted and fully disor-
dered system is concerned �for �=0� the critical concentra-
tion of the Heisenberg model amounts to pc=4 /z and is
twice as big as for the Ising model, where pc=2 /z. The value
of pc=2 /z for the Ising model without any structural corre-
lations is in agreement with the CPA method3,4 and is close
to the MC simulations7,13 for percolation threshold. The
comparison of the results for various lattices is given in
Table I. On the other hand, in Fig. 1 it is seen a general
tendency that the clustering ���0� decreases the critical
concentration whereas the opposite tendency, favoring sepa-

ration of magnetic atoms ��
0�, increases this value.
In Fig. 2 the critical temperature for the honeycomb lat-

tice is shown vs concentrations of magnetic atoms for the
pure Ising model �Fig. 2�a�� and in the presence of aniso-
tropy J� /J=0.9 �Fig. 2�b��. The different curves correspond
to the respective SRO parameters �. With the dashed curve
the envelope of all those curves is shown, which corresponds
to the allowed region of � from Fig. 1. It can be noted that
the clustering ���0� results in a remarkable shift of the
phase boundaries with respect to the fully disordered system
��=0�.

In turn, for the fcc lattice the critical temperature vs con-
centration is shown in Fig. 3 for the pure Ising model �Fig.
3�a�� and for the isotropic Heisenberg one �Fig. 3�b��. It is
seen in Fig. 3 that the curves corresponding to different �
parameters, both positive and negative, are distributed more
symmetrically around �=0 than in Fig. 2. In both Figs. 2 and
3 the dilution causes decrease in the phase-transition tem-
perature, which eventually vanishes at the critical concentra-
tion pc being characteristic of a given SRO parameter �.

On the basis of the Eqs. �19�–�23�, it can be shown that in
the vicinity of the critical concentration the Curie tempera-
ture for the system depends on p in the following manner:

kBTC

J
= −

1

2
1 −

J�

J
� 1

ln�p − pc�
, �25�

in the presence of anisotropic interaction, i.e., for J�
J.
Analogously, for the isotropic Heisenberg magnet �J�=J� the
Curie temperature for p→pc is expressed by

TABLE I. Critical concentrations for different lattices without
SRO ��=0� calculated for the Ising �Eq. �22�� and Heisenberg �Eq.
�23�� models and compared with the numerical estimates for the
percolation thresholds �Refs. 7 and 13�.

z Ising Heisenberg Percolation

2 1 1

3 0.667 0.698 �honeycomb�
4 0.5 1 0.593 �square�
6 0.333 0.667 0.5 �triangular�

0.311 �sc�
8 0.25 0.5 0.245 �bcc�
12 0.167 0.333 0.198 �fcc�

FIG. 2. The critical temperature for honeycomb lattice as depen-
dent on the concentration of magnetic atoms, �a� for pure Ising
model and �b� for interaction anisotropy J� /J=0.9. Various values
of Warren-Cowley parameter were adopted.
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kBTC

J
= −

1

ln�p − pc�
. �26�

Such a steep, logarithmic dependence of TC vs p is visible in
Figs. 2–4. Let us note that this result is in agreement with the
exact behavior expected for diluted ferromagnets near perco-
lation transition, as shown in the Ref. 24 and 25.

The decrease in phase-transition temperature vs concen-
tration is further presented in Fig. 4 for various anisotropy
parameters J� /J. Figure 4�a� is prepared for the honeycomb
lattice and SRO parameter �=0.5 while Fig. 4�b� is for the
fcc lattice and �=−0.25. It can be concluded from that figure
that the existence of anisotropy �J�
J� results in distinct
increase in the critical temperature. At the same time, it is
worth stressing that for the honeycomb lattice we deal with a
single critical concentration for all J� �which is the same as
for the Ising model� whereas for the fcc lattice two values of
critical concentrations have been found. One critical concen-
tration corresponds to the isotropic Heisenberg model �J�
=J� whereas the other one is for the anisotropic �J�
J� case.
It is demonstrated in Fig. 4�b� that even introducing minor
anisotropy the phase-transition curves rapidly change.

In Fig. 5 the phase diagrams kBTC /J vs anisotropy J� /J
are presented. Figure 5�a� corresponds to the honeycomb lat-
tice with fixed concentration p=2 /3 whereas Fig. 5�b� is for
the fcc lattice with p=1 /3. The different curves represent the
various SRO parameters �. It is seen that diminishing of
anisotropy �J� /J→1� results in decrease in the critical tem-
peratures for all � parameters. The critical temperature val-
ues kBTC /J for the isotropic model �J�=J� can either be zero,

for zeff�4 or nonzero �for zeff�4�. By zeff=zp�1+�� we
define the effective number of NN for the given dilution p
and SRO parameter �. The curves corresponding to the spe-
cific case zeff=4 in Figs. 5�a� and 5�b� have been plotted with
a bold line.

FIG. 3. The critical temperature for fcc lattice as dependent on
the concentration of magnetic atoms, �a� for pure Ising model and
�b� for isotropic Heisenberg model. Various values of Warren-
Cowley parameter were adopted.

FIG. 4. The critical temperature as a function of concentration
of magnetic atoms for various interaction anisotropies, �a� for hon-
eycomb lattice with �=0.5 and �b� for fcc lattice with �=−0.25.

FIG. 5. The critical temperature as dependent on interaction
anisotropy for various values of Warren-Cowley parameter, �a� for
honeycomb lattice with p=2 /3 and �b� for fcc lattice with p=1 /3.
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In order to inspect in more detail the vanishing of critical
temperature when J�→J and zeff→4, the additional numeri-
cal calculations are presented in Fig. 6. For this purpose the
new anisotropy parameter �= �J−J�� /J has been introduced,
which for �→0 corresponds to the isotropic Heisenberg
model whereas in the limit �→1 the pure Ising case is re-
covered. In Fig. 6 the kBTC /J vs � �Fig. 6�a�� and ln−1��−1�
�Fig. 6�b�� is presented when zeff is from the range 3.9
�zeff�4.1. It can be seen that zeff=4 is the critical effective
number of NN, below which the Heisenberg model �for �
=0� is magnetically disordered at any temperature. The van-
ishing of TC for �→0 and zeff=4 is much slower than linear,
as it is seen in Fig. 6�a�. However, in the coordinates chosen
for Fig. 6�b� the decrease becomes linear vs ln−1��−1� and we
have found that in the PA method its slope coefficient is
equal to unity.

The linear dependency shown in Fig. 6�b� can be substan-
tiated on the basis of Eq. �19� when zeff=zp�1+��=4. Then
we get

exp��CJ/2� = exp��CJ�/2� + exp�− �CJ�/2� . �27�

Substituting J�=J�1−�� into Eq. �27� and making use of the
linear expansion exp��CJ� /2��1�CJ� /2, which is
valid for �CJ�→0, we obtain

�CJ�/2 = exp�− �CJ��1 + �CJ�/2� , �28�

hence for �→0

�CJ = ln1 +
2

�CJ�
� � ln 2

�CJ�
� . �29�

Equation �29� can be written in the equivalent form

 kBTC

J
�	ln2kBTC

J
� + ln 1

�
�
 = 1. �30�

Now, one can make use of the limit x ln�2x�→0 for x→0.
Thus, from Eq. �30� we obtain the final formula

kBTC

J
=

1

ln�1/��
�31�

valid for �→0 and zeff=4. The relationship �31�, obtained
here in the PA method, is in qualitative agreement with the
mean-field renormalization group approach and consider-
ations presented in the Refs. 26 and 27, as well as with the
Monte Carlo simulations28,29 and even with some rigorous
estimations.30

In a similar way, we have found from Eq. �19� that for
2
zeff
4 the critical temperature dependence on � is linear
when �→0 and reads

kBTC

J
=

1

2 ln�zeff/�2�zeff − 2���
� . �32�

Such a linear dependency is in agreement with Fig. 6�a�.
Moreover, for zeff�4 the expression for TC is also linear vs
� �for �→0� and is of the form

kBTC

J
=

1

ln�zeff/�zeff − 4��1 +
2

zeff − 4
�� . �33�

In particular, when �=0 we obtain from Eq. �33� the Curie
temperature of isotropic Heisenberg model given by Eq.
�21�.

IV. CONCLUSION

The PA method, recently developed for the anisotropic
Heisenberg model,18 has been extended here for the diluted
alloy case with the SRO parameter taken into account. In
particular, the phase-transition temperatures and the critical
concentrations have been calculated. It has been demon-
strated that within the PA method, the critical concentrations
for the isotropic Heisenberg model are different than for the
Ising one �Eqs. �22� and �23��. It has been found that the
SRO parameter has a great influence on the critical tempera-
ture of diluted magnet and, in particular, on the critical con-
centration pc. The Curie temperature dependencies on the
atomic concentration in the vicinity of pc have been derived
for the anisotropic and isotropic models in the form of loga-
rithmic laws �Eqs. �25� and �26�, respectively�. The influence
of the anisotropy in the presence of dilution has also been
studied and some analytical formulas �31�–�33� for the lim-
iting case �→0 have been obtained.

As far as the PA method is concerned, the possibility of
handling the Gibbs free energy, and hence the self-consistent
calculation of all thermodynamic properties as well as its
applicability for low-dimensional systems reflects well the
usefulness of this approach. At the same time, some deficien-
cies of the method, which have been discussed in the Ref. 18
for the crystalline systems, remain here and become trans-
ferred to the description of the structurally disordered

FIG. 6. The critical temperature as dependent on the interaction
anisotropy, presented in �a� linear scale and �b� logarithmic scale, in
the vicinity of the critical effective coordination number zeff=4 �for
which the solid line was plotted�.
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magnets. A noticeable difficulty arising in the context of PA
is connected with undistinguishable lattices which possess
the same coordination number z but indicate different sym-
metry. An example is z=6, both for the 3D simple cubic
lattice and 2D triangular one. It can be noticed that in the

case of the annealed limit the star-triangle transformation
might be helpful31 by enabling to transform the triangular
lattice into an equivalent honeycomb one. However, for such
a case an appropriate reformulation of the PA method would
be required.
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