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The pair-approximation method is modified in order to describe systems with geometrical frustration. The
Ising antiferromagnet on a triangular lattice with selective dilution (Kaya-Berker model) is considered and a
self-consistent thermodynamic description of this model is obtained. For this purpose, the Gibbs free energy as a
function of temperature, concentration of magnetic atoms on the selected sublattice, and external magnetic field
is derived. In particular, the phase diagram is constructed and a comparison of different methods is presented.
The thermodynamic quantities are discussed in the context of their physical validity, and the improvement in the
description introduced by the modified method is emphasized.
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I. INTRODUCTION

Although frustrated spin systems have been studied in
the literature for over six decades, they still present a
challenging problem for theorists [1–21]. During recent years
the interest in theoretical studies of such systems has still been
increasing [22–41]. This interest mainly concerns the low-
dimensional frustrated magnets which exhibit an intriguing
interplay between order and disorder and can reveal the
existence of new magnetic phases. In turn, the theoretical
efforts stimulate the search for the experimental realization of
such systems. For instance, in response to theoretical demand,
frustrated triangular lattices have been synthesized in some
layered magnets [16,18,32,38,42–45].

The theoretical studies of low-dimensional frus-
trated systems have included such structures as trian-
gular [1,2,6,8,9,11,14,17,24,27,30,31,35,37,40,41], honey-
comb [19,25,26,29], square [13,20,36], triangular-square [3],
kagome [10,11,46], pyrochlore [10], pentagonal [33], and
Shastry-Sutherland lattice [34], and others [47]. Apart from
several exact results [1,6,13,33,34,39], most of them have
been obtained by the approximate methods, for example,
the constant coupling method [10], the Green function
technique [23], the spin waves approach [27], cluster the-
ory [8,25,41], the hard-spin mean-field (HSMF) method [7,9],
effective field theory (EFT) [24,31], and Monte Carlo (MC)
simulations [3,14,19,20,35–37,40,48,49].

The classical frustrated spin system is an antiferromagnetic
Ising model with spin S = 1/2 on a triangular lattice with
nearest-neighbor (NN) interactions. This model has been
solved exactly by Wannier [1], who has shown that no
long-range ordering exists there at any temperature T > 0. For
T = 0 the long-range correlation function has been studied
in Ref. [50] showing its algebraic decay with distance as
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r . On the other hand, the triangular lattice can also
be understood as the planar, hexagonal centered lattice [6].
When the central atoms from each hexagon are removed we
obtain a pure honeycomb lattice. In turn, the honeycomb lattice
with antiferromagnetic NN interactions has no frustration and
reveals antiferromagnetic ordering.

According to the above observation, Kaya and Berker [9]
proposed a model in which the atoms in centers of hexagons
are randomly diluted. Such a model presents an intermediate
situation between a fully frustrated (disordered) triangular
lattice and an unfrustrated honeycomb lattice with antifer-
romagnetic order. Namely, in the Kaya-Berker (K-B) model
the system can be decomposed into three interpenetrating
lattices A, B, and C. The situation is schematically presented
in Fig. 1. We assume that sublattice C is randomly diluted with
concentration 0 � p � 1. In particular, for p = 0, we obtain
a pure hexagonal lattice composed of A and B atoms only,
whereas for p = 1, when all sites C are occupied by magnetic
atoms, the system presents an ideal triangular lattice. Thus, the
occurrence of selective dilution on the C sublattice presents
an interesting situation, where the magnetic ordering emerges
when the p parameter decreases. It is worth noticing that, when
the concentration p is large enough (p � 1/2), a decrease of p

means an increase of structural disorder, so this phenomenon
can be regarded as a structural analog of the “order by disorder”
effect.

One of the first results for the K-B model, which was
originally described in the frame of the HSMF method [9], was
prediction of the critical concentration pc for the diluted lattice,
below which the system develops long-range ordering. In the
first approximation this concentration amounts to pc = 0.958,
whereas in the further approximation pc = 0.875. The last
result has recently been confirmed by EFT calculations [31],
with an astonishing accuracy of three digits. In order to explain
this agreement, one can show on the basis of Ref. [51] that
EFT (which was introduced some time ago by Honmura and
Kaneyoshi [52]) is formally equivalent to the HSMF method
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FIG. 1. A schematic presentation of the triangular lattice consist-
ing of three sublattices A, B, and C. Sublattice C is randomly diluted
with concentration p.

in its further approximation. On the other hand, EFT is also
equivalent to the first Matsudaira approximation [53,54]. It
has also been shown that the HSMF method is equivalent
to an improved mean-field theory [55,56], which is nothing
more than EFT. So, the coincidence of the results for pc,
yielded by the HSMF method and EFT, becomes a rather
obvious consequence. On the other hand, MC studies of the
K-B model predict, at least in the region 0 � p � 0.95, that
the antiferromagnetic ordering exists on A and B sublattices,
and for p = 0.95 the critical temperature is still high (about
40% of its maximal value for p = 0) [14].

In the view of above results, the value of pc, and even
its existence, remains unsettled. It is worth noticing that the
existence of pc < 1 would imply the existence of the interval
pc < p < 1 in which no ordering takes place at T = 0. On
the other hand, for p = 1, i.e., for a pure triangular lattice, it
follows from the Wannier paper [1] that the system may order
at T = 0 with no costs of energy. This conclusion was also
confirmed in Ref. [12]. The ordered state at T = 0 corresponds
to the following sublattice magnetizations: mA = 1/2, mB =
−1/2, and mC = 0, where A, B, and C are arbitrarily chosen
sublattices. In the context of these results, the existence of the
gap for pc < p < 1, where no ordering takes place, would
be difficult to explain. This issue motivated us to study, by
means of another method, whether pc < 1 in the K-B model
exists.

We apply the pair-approximation (PA) method in the
frame of the cluster variational approach. The method is
based on the cumulant expansion for the entropy [57]
when the second-order cumulants are taken into account
and higher-order cumulants are neglected. This approach has
already been applied for the low-dimensional Ising [58] and
Heisenberg [59] systems, including structural disorder [60].
The advantage of the PA method over the molecular field
approximation (MFA) has been discussed there. It is worth
noticing that, contrary to MFA, the PA method takes into ac-
count nearest-neighbor spin-pair correlation functions which
incorporate important fluctuations. Recently, the method was
also applied for the ferromagnetic analog of the K-B model,
without frustration [61]. However, for the frustrated system

considered here the method should be adopted with some
necessary modification, which is explained in the theoretical
section.

The modified PA method proposed here yields the Gibbs
free energy of the system, which is a function of temperature,
external field, and number of particles (spins). Next, from the
expression for the Gibbs energy all thermodynamic quantities
can be derived. Thus, the modified PA method gives the
possibility of a complete thermodynamic description of the
frustrated system in an approximate but fully self-consistent
way.

The paper is organized as follows: In the theoretical part
a foundation of the PA method is outlined and its application
for frustrated systems is explained in detail. In the following
section the numerical calculations are presented in the figures
and discussed. The results concern all basic thermodynamic
properties which are obtained from minimization of the Gibbs
energy. In particular, the phase diagram and the existence
of critical concentration pc is discussed in the context of
other methods. In the last section a summary of the results
is presented and some final conclusions are drawn.

II. THEORETICAL MODEL

A. General formulation

We consider the Ising model with spins Siα = ±1/2
arranged on the triangular lattice with antiferromagnetic NN
interactions. The ith lattice site belongs to the sublattice
α = A,B,C, and the random dilution of the selected sublat-
tice (C) is assumed. The Hamiltonian can be presented as
follows:

H = −J
∑
iA,jB

SiASjB
− J

∑
jB ,kC

SjB
SkC

ξkC
− J

∑
iA,kC

SiASkC
ξkC

−h

⎛
⎝∑

iA

SiA +
∑
jB

SjB
+

∑
kC

SkC
ξkC

⎞
⎠ , (1)

where J � 0 is the NN antiferromagnetic exchange interac-
tion, h stands for the external field, and ξkC

= 0,1 is the random
occupation operator. The configurational mean value of ξkC

,
〈ξkC

〉r = p presents a fraction of occupied sites (concentration
of magnetic atoms) on the C sublattice.

In general, the Gibbs energy G can be presented as

G = 〈H〉 − ST , (2)

where 〈H〉 is the enthalpy and S presents the entropy of the
system. The enthalpy (which is the averaged Hamiltonian
containing the external field term) is of the form

〈H〉 = −NJ (cAB + pcBC + pcAC)

− 1
3Nh(mA + mB + pmC). (3)

In Eq. (3) N denotes the total number of lattice sites in
the triangular lattice (which is equal to the number of NN
lattice site pairs in two sublattices). The thermal mean values
are written in shortened notation as cAB = 〈SiASjB

〉, cBC =
〈SjB

SkC
〉, and cAC = 〈SiASkC

〉 and denote three NN correlation
functions (for occupied lattice sites), whereas mα = 〈Siα 〉
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(α = A,B,C) denote three sublattice magnetizations per (oc-
cupied) lattice site. Assuming that occupation operators are
independent of the Ising spins, Eq. (3) is exact for the model in
question.

As a general approach, the entropy can be expressed in a
series of cumulants [57]. In the PA method only first- and
second-order cumulants are taken into account. Thus, the
entropy can be approximately presented as follows:

S = N

3
(σA + σB + pσC) + N (σAB − σA − σB)

+Np(σBC − σB − σC) + Np(σAC − σA − σC), (4)

where σα (α = A,B,C) are the single-site entropies and σαβ

(α �= β = A,B,C) are the entropies of NN pairs. Expres-
sion (4) for the entropy can be rewritten in a more convenient
form:

S = N
[
σAB + p(σBC + σAC)

− (
2
3 + p

)
(σA + σB) − 5

3pσC

]
. (5)

The single site and pair entropies can be found from their
definitions:

σα = −kBTriα
(
ρiα lnρiα

)
(6)

and

σαβ = −kBTriαjβ

(
ρiαjβ

lnρiαjβ

)
, (7)

where ρiα and ρiαjβ
are the single-site and pair density matrices,

respectively. For spins 1/2 these matrices are given by the
expressions:

ρiα = 1
2 + 2mαSiα (8)

(α = A,B,C; Siα = ± 1
2 ), and

ρiαjβ
= 1

4 + mαSiα + mβSjβ
+ 4cαβSiαSjβ

(9)

(α �= β = A,B,C), respectively. Let us remark that decou-
pling of correlations, cαβ ≈ mαmβ , is equivalent to factor-
ization of the pair matrices, ρiαjβ

≈ ρiαρjβ
, and leads to

the approximation σαβ ≈ σα + σβ . This is equivalent to the
molecular field approximation method, in which expression (4)
for the entropy contains only the first, additive term [58]. As
discussed in Ref. [58], the single-site density matrices are

normalized,

Triαρiα = 1, (10)

and the pair density matrices can be reduced:

Trjβ
ρiαjβ

= ρiα . (11)

The matrices given by Eqs. (8) and (9) satisfy the relationships
for the thermodynamic mean values:

mα = 〈
Siα

〉 = Triα
(
Siαρiα

)
(12)

and

cαβ = 〈
SiαSjβ

〉 = Triαjβ

(
SiαSjβ

ρiαjβ

)
. (13)

With the help of the density matrices (8) and (9) the single-
site (6) and pair (7) entropies can be expressed as

σα = −kB
(

1
2 + mα

)
ln

(
1
2 + mα

)
− kB

(
1
2 − mα

)
ln

(
1
2 − mα

)
(14)

(α = A,B,C), and

σαβ = −kBρ++
αβ lnρ++

αβ − kBρ+−
αβ lnρ+−

αβ

− kBρ−+
αβ lnρ−+

αβ − kBρ−−
αβ lnρ−−

αβ (15)

(α �= β = A,B,C), respectively. In Eq. (15) we introduced the
following abbreviated notation:

ρ++
αβ = 1

4 + 1
2mα + 1

2mβ + cαβ,

ρ+−
αβ = 1

4 + 1
2mα − 1

2mβ − cαβ,
(16)

ρ−+
αβ = 1

4 − 1
2mα + 1

2mβ − cαβ,

ρ−−
αβ = 1

4 − 1
2mα − 1

2mβ + cαβ.

Taking into account the above formulas and Eq. (2), the Gibbs
energy per lattice site, expressed in |J | units, can be written in
the final form:

G

N |J | = cAB + p(cAC + cBC)

− 1

3

h

|J | (mA + mB + pmC) − kBT

|J |
S

NkB
, (17)

where the dimensionless entropy per lattice site is in the
form of

S

NkB
= −ρ++

AB lnρ++
AB − ρ+−

AB lnρ+−
AB − ρ−+

AB lnρ−+
AB − ρ−−

AB lnρ−−
AB

−p [ρ++
AC lnρ++

AC + ρ+−
AC lnρ+−

AC + ρ−+
AC lnρ−+

AC + ρ−−
AC lnρ−−

AC ]

−p [ρ++
BC lnρ++

BC + ρ+−
BC lnρ+−

BC + ρ−+
BC lnρ−+

BC + ρ−−
BC lnρ−−

BC ]

+
(

2

3
+ p

)[(
1

2
+ mA

)
ln

(
1

2
+ mA

)
+

(
1

2
− mA

)
ln

(
1

2
− mA

)]

+
(

2

3
+ p

)[(
1

2
+ mB

)
ln

(
1

2
+ mB

)
+

(
1

2
− mB

)
ln

(
1

2
− mB

)]

+ 5

3
p

[(
1

2
+ mC

)
ln

(
1

2
+ mC

)
+

(
1

2
− mC

)
ln

(
1

2
− mC

)]
(18)

and ρ±±
αβ are given by Eqs. (16).
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B. Modification of the PA method for the system
with geometrical frustration

From the general formulation, the Gibbs energy given by
Eq. (17) is a function of six variational parameters: mA,
mB , mC , cAB , cAC , and cBC . In the conventional approach
within PA, the Gibbs energy in equilibrium corresponds to
the minimum with respect to all these parameters, which are
treated equally. However, in the case of geometrical frustration
such treatment leads to wrong (unphysical) results since the
correlations cαβ are not fully independent parameters [8]. As
a consequence, the ground-state energy is incorrect and the
entropy is negative in the low-temperature region. In order to
improve on the method, we propose its modification for the
Gibbs energy calculation. The modified method is based on
the assumption that the correlations involving frustrated spins
should be partly decoupled. Namely, let us assume that the spin
SkC

is frustrated in the k site of the selected lattice C. Then,
mA, mB , mC , and cAB can further be treated as independent
parameters; however, the correlations cAC and cBC , which
involve the frustrated spin SkC

, are not independent of the rest
of parameters and should be treated in a more complex way.
First of all, let us observe that in a given triangle (iA,jB,kC), the
spin SkC

is frustrated only when the spins SiA and SjB
take the

antiparallel orientation. The probability x of such a situation
can be estimated as follows:

x = ρ+−
AB + ρ−+

AB = 1
2 − 2cAB. (19)

In the rest of states (i.e., when the spins SiA and SjB
are

parallel) the spin SkC
is not frustrated in this triangle. This type

of (unfrustrated) situation occurs with the probability 1 − x,
where

1 − x = ρ++
AB + ρ−−

AB = 1
2 + 2cAB. (20)

Therefore, for the correlations cAC and cBC we propose the
following approximation:

cAC ≈ x
〈
SiASkC

〉′′ + (1 − x)
〈
SiASkC

〉′
(21)

and

cBC ≈ x
〈
SjB

SkC

〉′′ + (1 − x)
〈
SjB

SkC

〉′
, (22)

respectively. For the case when the spins SiA and SjB
are

parallel, both correlations involving spin SkC
must be equal;

therefore, 〈SiASkC
〉′ = 〈SjB

SkC
〉′ = c′, and c′ can be treated as

a new variational parameter, in addition to mA, mB , mC , and
cAB . On the other hand, for the frustrated states of SkC

, the
correlations 〈SiASkC

〉′′ and 〈SjB
SkC

〉′′ should be decoupled as
follows: 〈

SiASkC

〉′′ ≈ 〈
SiA

〉′′〈
SkC

〉 = 〈
SiA

〉′′
mC (23)

and 〈
SjB

SkC

〉′′ ≈ 〈
SjB

〉′′〈
SkC

〉 = 〈
SjB

〉′′
mC, (24)

where 〈SiA〉′′ (and 〈SjB
〉′′) denote the conditional averages,

i.e., the averages when the neighboring spins SjB
and SiA are

antiparallel, respectively. These mean values can be calculated
with the help of the two normalized probabilities, ρ+−

AB /x and
ρ−+

AB /x, as follows:

〈
SiA

〉′′ = 1

x

(
1

2
ρ+−

AB − 1

2
ρ−+

AB

)
= 1

2x
(mA − mB) (25)

and

〈
SjB

〉′′ = 1

x

(
1

2
ρ−+

AB − 1

2
ρ+−

AB

)
= 1

2x
(mB − mA). (26)

Thus, for the correlations cAC and cBC we obtain the following
approximation:

cAC ≈ 1
2 (mA − mB)mC + (

1
2 + 2cAB

)
c′ (27)

and

cBC ≈ 1
2 (mB − mA)mC + (

1
2 + 2cAB

)
c′. (28)

This approximation contains partial decoupling, but also
introduces a new variational parameter c′ for the correlations
containing unfrustrated states of SkC

. Substituting Eqs. (27)
and (28) into the Gibbs energy (17) [and entropy (18)] we
can describe our frustrated system with no risk of getting
unphysical solutions. The equilibrium for the Gibbs energy
is obtained for five variational parameters only, whose values
should be restricted to the following physical ranges: −1/2 �
mα � 1/2 (α = A,B,C), and −1/4 � (cAB, c′) � 1/4.

C. Thermodynamic properties and the variational equations

The complete and self-consistent thermodynamic descrip-
tion can be obtained from the basic equation for the Gibbs
potential (17) with the help of Eqs. (27) and (28). Since
the Gibbs energy is a function of the external field h and
temperature T , the first derivatives lead to the results

1

N

(
∂G

∂h

)
T

= −1

3
(mA + mB + pmC) = −m, (29)

where m is the averaged magnetization per lattice site, and(
∂G

∂T

)
h

= −S, (30)

where S is the entropy [given in the form of Eq. (18)]. It is
worth noticing that formulas (29) and (30) are only satisfied
together with the necessary extremum conditions:

∂G

∂mα

= 0 (31)

(α = A,B,C),

∂G

∂cAB

= 0, (32)

and

∂G

∂c′ = 0 (33)

(provided |c′| � 1/4). Equations (31)–(33) form a set of five
variational equations from which the variational parameters
can be obtained. The detailed form of these equations for
h = 0 is presented in the Appendix. When solving such
equations it should be controlled whether the solutions fall
into the physical ranges −1/2 � mα � 1/2 (α = A,B,C),
−1/4 � cAB � 1/4, and −1/4 � c′ � 1/4. If for a certain
parameter this is not the case, we should assume the value of
that parameter at the edge of the physical range, where the
Gibbs energy reaches its minimum. In such a case, when the
variational parameter is constant at the edge, the corresponding
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variational equation should be ignored. This objection mainly
concerns Eq. (33) in the low-temperature region, and the
consequences are discussed in the next section in more detail.

As far as other thermodynamic properties are concerned,
they can be obtained from the second derivatives of the Gibbs
energy. For instance, the isothermal susceptibility is given by

χT = N

(
∂m

∂h

)
T

= −
(

∂2G

∂h2

)
T

. (34)

In turn, the magnetic contribution to the specific heat at
constant field h can be found from the relationship

Ch = T

(
∂S

∂T

)
h

= −T

(
∂2G

∂T 2

)
h

. (35)

Since the whole theory is self-consistent, the specific heat can
also be calculated in an equivalent way:

Ch =
(

∂〈H〉
∂T

)
h

, (36)

where 〈H〉 is the enthalpy given by Eq. (3). Equivalency of
Eqs. (35) and (36) requires that calculations of the entropy must
be consistent with calculations of the correlation function. The
numerical results and their detailed analysis are presented in
the next section.

III. NUMERICAL RESULTS AND DISCUSSION

We start the numerical analysis from the ground state. At
T = 0 the entropic part in the Gibbs energy is unimportant and
only enthalpy (the mean value of the Hamiltonian) determines
the thermodynamic potential. Therefore, the ground-state
phase diagram can be determined exactly. By analysis of the
enthalpy minimum in five-dimensional space, in the range of
concentration 0 < p < 1 and h = 0, we found that the
sublattice magnetizations in the ground state take the values
mA = 1/2, mB = −1/2, and mC = 0 (or, symmetrically,
mA = −1/2, mB = 1/2, and mC = 0). At the same time, the
correlation parameters in this regime are cAB = −1/4 and c′ =
−1/4. The absence of magnetization on C sublattice is due to
the fact that the frustrated spins SkC

can take the values ±1/2
with the same probability. For h/|J | belonging to the range
0 < h/|J | < 1.5, magnetization in the ground state is given
by mA = 1/2, mB = −1/2, and mC = 1/2 (or mA = −1/2,
mB = 1/2, and mC = 1/2). At h/|J | = 1.5 the spin-flip tran-
sition takes place, and for 1.5 < h/|J | < 3 the ground state is
characterized by mA = 1/2, mB = 1/2, and mC = −1/2. The
next spin reversal on the C sublattice is observed for h/|J | = 3,
leading to the uniform magnetization mA = 1/2, mB = 1/2,
and mC = 1/2 when h/|J | > 3. At h/|J | = 1.5 and h/|J | = 3
the coexistence of neighboring phases takes place.

For p = 1 the situation becomes more complex, because
for h = 0 and T = 0 each triangle consisting of NN spins
is sixfold degenerated [62]. From the analysis of enthalpy
at this point we found that two distinct kinds of states can
coexist with the same energy. One is the ordered state, in
which two sublattices have opposite magnetizations, and the
magnetization of the third sublattice is equal to zero. This state
can be considered a continuation of the situation which occurs
for 0 < p < 1 and can be characterized by the parameters
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FIG. 2. Dependence of critical temperature kBTc/|J | on concen-
tration p. A comparison of different methods is presented.

mA = 1/2, mB = −1/2, mC = 0, cAB = −1/4, cAC = 0, and
cBC = 0. The ordered state vanishes discontinuously when
T > 0. Another state, which coexists in the ground-state
point (p = 1, h = 0, T = 0), is the disordered state. It is
characterized by the parameters mA = 0, mB = 0, mC = 0,
cAB = −1/12, cAC = −1/12, and cBC = −1/12. This dis-
ordered state extends over nonzero temperatures T > 0. For
p = 1 and 0 < h/|J | < 3 the ground state is ordered and is
characterized by two sublattices oriented in parallel to the
external field and one antiparallel. At h/|J | = 3 the spin-flip
transition takes place and for h/|J | > 3 all three sublattices
have magnetizations oriented in parallel with the field.

Furthermore, we concentrate on the numerical calcula-
tions of thermodynamic quantities for h = 0 in the whole
concentration range 0 � p � 1 and arbitrary T . The most
intriguing problem concerns the existence of phase transitions.
In Fig. 2 we illustrate the phase transition (Néel) temperature
vs concentration p. The ordered state presents a continuation
of the phase existing in the ground state and is characterized
by mA = −mB and mC = 0. Such a solution has also been
found by MC simulations [14]. Various curves and markers
in Fig. 2 correspond to different methods. The exact results
(marked by bold points) have been found for p = 0 and
p = 1 as kBTc/|J | = 1/(2 ln(2 + √

3)) ≈ 0.3797 [63] and
kBTc/|J | = 0 [1], respectively. MC results are marked by
diamond symbols [14]. For p = 0, a good agreement of the
MC result with the exact solution can be noted.

It should also be mentioned that in case of a honeycomb
lattice, as well as for other two-dimensional (2D) lattices,
high-temperature series-expansion (HTSE) method [64] gives
the critical temperature which is practically exact. Other
approximate methods are not so accurate. For instance, the
thermodynamic perturbation theory [65] gives for a hon-
eycomb lattice the result kBTc/|J | = 0.43 (for S = 1/2) in
the fourth approximation, which is slightly better than the
Bethe result (0.4551). However, in the sixth approximation
the method developed in Ref. [65] gives 0.481, which is worse
than the value estimated in the fourth approximation. For this
reason such a theory cannot be recommended for a honeycomb
lattice as a systematic approach. One of the recent results for
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the critical temperature of a honeycomb lattice was obtained by
correlated cluster mean-field (CCMF) theory [66]. The value
obtained there was ≈0.398. Also a short overview of other
approximate methods can be found in Ref. [66]. However,
none of these methods have been applied for the Kaya-Berker
model with geometrical frustration.

It has been known that the MC method is difficult to apply
for this model for 0 < p < 1 in the low-temperature region,
where the spins can be frozen and the algorithm becomes
trapped in the vicinity of a local free energy minimum [14].
For 0 < p < 1 this difficulty is attributed to the glassy behavior
of spins SkC

[14]. It should be mentioned that the spin-glass
state does not occur for p = 1 (i.e., for a pure triangular
lattice) [67] and MC methods have been successful there
for relatively low temperatures [48,49]. However, for 0 <

p < 1, some analytical methods, which are able to overcome
this difficulty, are still desired. The most crude description,
which neglects fluctuations, is given by the MFA and is
depicted by the horizontal dotted line at kBTc/|J | = 0.75.
It is obvious that such a method cannot be accepted for
frustrated systems. A much better description is provided
by EFT [31] (marked by the double-dotted line), which, as
discussed in the Introduction, is equivalent to HSMF theory
in further approximation [9]. In such a case the critical
concentration pc = 0.875 is predicted, below which the system
becomes ordered. In turn, application of the PA method in
its conventional formulation (with six variational parameters)
gives the reentrant magnetism (dashed curve) and unphysical
result, since no ordering is predicted for all p. It is worth a
mention that for ferromagnetic systems, without frustration,
the PA method gives usually better results than EFT, as for
example discussed in Ref. [61].

We are aware that the PA method in its usual, unmodified
formulation for frustrated systems overestimates NN correla-
tion functions in low temperatures, which leads to improper
ground-state energy and negative entropy. Therefore, we first
tried to develop the triangle approximation (TA) according to
the general cluster variational method (CVM) for the Ising
systems [68]. In the case of TA we deal with 12 variational
parameters. In some testing calculations for the triangular
lattice with ferromagnetic interactions we obtained the Curie
temperature kBTc/|J | = 1/(2 ln(5/3)) ≈ 0.9788, which is not
far from the exact result kBTc/J = 1/ ln 3 ≈ 0.9102 [63].
However, for the frustrated model with antiferromagnetic
interactions the result of the TA method (marked by the
dash-dotted line in Fig. 2) is still unsatisfactory. In particular,
the reentrant magnetism is found near p = 1, and for p = 1
the ordered phase extends up to kBTc/|J | = 0.2464. It is
expected that further approximations within the systematic
CVM will improve on the results; however, the number
of variational parameters then increases (for instance, there
would be 21 parameters in the hexagonal approximation) and
the method developed in Ref. [68] becomes intractable in
practice.

Taking into account the above problems, we decided to
modify the PA method in order to obtain a simplified but
still qualitatively correct description of the model. The result
for Tc is shown in Fig. 2 as a solid curve. For p = 0 we
obtained kBTc/|J | = 1/(2 ln 3) ≈ 0.4551, i.e., the same value
as for the ferromagnetic case [61], and identical with the Bethe
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FIG. 3. Sublattice spontaneous magnetizations mA = −mB vs
dimensionless temperature kBT/|J |. Different curves correspond to
various concentrations p.

result kBTc/|J | = 1/[2 ln(z/(z − 2))] for NN number z = 3.
On the other hand, for p = 1 the exact Wannier result Tc = 0 is
recovered. It follows from the present method that the ordered
phase exists in the full range of 0 � p � 1, whereas for p = 1
and T = 0 it coexists with the disordered phase.

In Fig. 3 the sublattice spontaneous magnetizations mA =
−mB are shown vs temperature. Magnetization of the diluted
sublattice C amounts to pmC = 0 for all temperatures.
Different curves correspond to various concentrations p. For
T = 0 the sublattice magnetization is constant vs p and
reaches its saturated value mA = 1/2 (mB = −1/2), which
is in agreement with the ground state. This result differs from
that obtained by EFT [31], where the magnetization at T = 0
depends on concentration. For p → 1 a jump of magneti-
zation from the value 1/2 to 0 signals the first-order phase
transition.

Entropy vs temperature per occupied lattice site, expressed
in Boltzmann constant units, is illustrated in Fig. 4. The
number of occupied lattice sites (spins) is denoted by N ′,
where N ′ = N (2 + p)/3, and N is the total number of lattice
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FIG. 4. Entropy S/N ′kB per occupied lattice site, expressed in
Boltzmann constant units, vs dimensionless temperature kBT/|J |.
Different curves correspond to various concentrations p.
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sites. Such normalization of the entropy allows to control its
high-temperature limit, which for T → ∞ amounts to ln 2. As
before, various curves correspond to different concentrations
p. For p = 0 entropy amounts to 0 in the ground (fully
ordered, antiferromagnetic) state. On the other hand, for p = 1
and T = 0 we obtained two values of the residual entropy:
S/N ′kB = (ln 2)/3 ≈ 0.2310 and S/N ′kB = 0.5232. These
values are marked by the bold points. A jump of the entropy
at (p = 1, T = 0) signifies the first-order transition between
ordered and disordered phases which have been identified in
the ground state.

We also found that for p = 1, below the characteristic
temperature kBTf/|J | = 0.721, the entropy practically does
not depend on temperature. It is connected with the fact that
in this temperature range the correlation c′ takes the constant
value c′ = −1/4, which is at the edge of its physical region.
Namely, in this case the absolute minimum of the Gibbs
energy lies outside the physical region, i.e., for c′ < −1/4,
and therefore Eq. (33) cannot be applied. However, when we
restrict the domain of c′ to the physical region, i.e., |c′| � 1/4,
the minimal value of the Gibbs energy in this domain exists
at c′ = −1/4. The situation changes for kBT/|J | > 0.721,
where the absolute minimum of G falls into the physical region
|c′| � 1/4 and Eq. (33) becomes effective for determination
of c′.

We conclude that the kink on the entropy curve at
kBTf/|J | = 0.721 originates from cutting off the unphysical
solution for the correlation function c′. It is seen for the entropy
because these quantities are interrelated via a minimum
condition for the Gibbs energy. In Fig. 4 we also present the
unphysical solution for the entropy curve for p = 1 (dashed
line), which results from the unmodified PA method. This
entropy becomes negative for kBT/|J | < ≈ 0.321 and reaches
its minimum value S/N ′kB ≈ −1.386 for T = 0. However, the
negative part of this entropy curve is not presented in the figure.
The effect of the kink diminishes when p decreases and for
p = 0, when the system has no frustration, it does not occur at
all. Other kinks on the entropy curves for p < 1 which occur in
lower temperatures are connected with the second-order phase
transitions from antiferromagnetic to paramagnetic phase.

Further results obtained for the entropy are illustrated in
Fig. 5 vs concentration p. The upper curve presents entropy
at the phase transition (Néel) temperature, whereas the lower
curve presents entropy at T = 0. An increasing character of the
residual entropy vs p is worth noticing. For p = 1 two values
of entropy (the same as those indicated in Fig. 4) are seen. Since
for p = 1 we have Tc = 0, the entropy jump at this temperature
point confirms the existence of first-order phase transitions.
The exact Wannier result [69], i.e., S/N ′kB = 0.32306, is also
depicted in the interval between our two points. It is worth
noticing that the recent result obtained from MC simulations
gave the value S/N ′kB = 0.32303 [70], which is very close to
the exact value.

The Gibbs energy curves vs temperature are presented in
Fig. 6 for various concentrations p. A monotonously decreas-
ing character of these curves evidences that the entropy [given
by Eq. (30)] is positive everywhere. For large temperatures
the Gibbs energy becomes linear vs T with the same slope for
all curves, which corresponds to the saturation value of the
entropy, as indicated in Fig. 4. The Gibbs energy is a smooth
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FIG. 5. Entropy S/N ′kB per occupied lattice site, expressed
in Boltzmann constant units, vs concentration p. Upper curve
corresponds to entropy at critical temperature T = Tc, whereas lower
curve presents the residual entropy at T = 0.

function vs temperature, without any kinks for T > 0 which
would signal the first-order phase transition. At T = 0, for all
concentrations the Gibbs energy is the same.

In Fig. 7 the NN correlation functions cAB are presented
vs temperature for various concentrations p. For p = 1,
similarly to entropy, the correlations are constant below the
characteristic temperature kBTf/|J | = 0.721, and for T = 0 a
jump of correlation function is seen between −1/4 value (for
ordered phase) and −1/12 value for the disordered state. The
analogous jump is seen in Fig. 8, where the NN correlation
functions cAC = cBC are presented. In this case a jump
from the value −1/12 (for disordered phase) to 0 (for ordered
state) takes place. It can be noted from Figs. 7 and 8 that for
T = 0 the mean correlation per pair, (cAB + cAC + cBC)/3, is
equal to −1/12 for both states, and its absolute value amounts
to one-third of the value for the ferromagnetic case. The same
result was also pointed out by Wannier [1] in his exact solution.
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FIG. 7. Nearest-neighbor correlation function cAB vs dimension-
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In Figs. 7 and 8 by dashed curves we denote the unphysical
solutions for the correlation functions for p = 1. Both curves
tend to −1/4 value for T = 0; however, in Fig. 8 only a part of
the curve is shown. These curves result from the unmodified PA
method and correspond to the unphysical entropy (presented
by the dashed curve in Fig. 4). The ground-state energy for
such a solution (for p = 1) amounts to −3/4|J | per spin and
is three times lower than the exact ground-state energy [1], as
well as the value obtained in the modified PA method.

A decreasing character of the cAC = cBC curves in Fig. 8,
when T increases in the range 0 < kBT/|J | � 0.721, has no
influence on the sign of magnetic specific heat, since the total
internal energy, and entropy, are monotonously increasing
functions of temperature. Thus, the specific heat is positive
everywhere.

The specific heat can be conveniently calculated from
Eq. (35) and the results are presented in Fig. 9. In this figure,
apart from the pronounced peaks corresponding to the Néel
temperatures, small jumps can be noted for kBTf/|J | = 0.721.
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FIG. 8. Nearest-neighbor correlation functions cAC = cBC vs
dimensionless temperature kBT/|J |. Different curves correspond to
various concentrations p.
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FIG. 9. Magnetic specific heat Ch/NkB per lattice site, expressed
in Boltzmann constant units, vs dimensionless temperature kBT/|J |.
Different curves correspond to various concentrations p.

Again, these jumps result from the entropy (or correlation
function) kinks presented in Figs. 4, 7, and 8. In Fig. 9, by
dashed curve, we present also the specific heat for p = 1,
when the correlation functions are not limited to the physical
range, i.e., are calculated within the unmodified PA method.
Such specific heat shows a broad maximum whose magnitude
is comparable with the peaks at the phase transitions presented
in this figure for p < 1. We are aware that the broad maximum
of the paramagnetic specific heat has also been found in MC
simulations [14], in accordance with the exact results for a
triangular lattice [1]. However, in the modified PA method only
a tail of this peak is present as a physical solution, whereas the
main part has been cut off in order to obtain self-consistent
thermodynamics (and to avoid unphysical entropy—see
dashed line in Fig. 4). It is interesting to note here that a
similar double-peak structure of the magnetic specific heat has
been found in the triangular antiferromagnet NiGa2S4 [16].

In the last figure (Fig. 10) the initial magnetic susceptibility
(for h = 0) is shown vs temperature for various concentrations
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p. In this case only the finite peaks connected with the
phase transition (Néel) temperature are seen. For p > 0 the
susceptibility diverges at T = 0, which is connected with the
rapid rearrangement of the ground state from mA = −mB =
1/2 and mC = 0 configuration (for h = 0) to the configuration
characterized by mA = −mB = 1/2 and mC = 1/2, which
occurs for 0 < h/|J | < 3/2. Moreover, a divergence of χT

for p = 1 and T = 0, and lack of peak for T > 0, confirms
the phase transition in the ground state for a triangular
antiferromagnet, in accordance with previous discussion. It
can be noted from Figs. 9 and 10 that both specific heat
and susceptibility curves present a correct thermodynamic
behavior in the limits T → 0 and T → ∞.

IV. SUMMARY AND FINAL CONCLUSIONS

In this paper we modified the PA method in order to
adopt it for frustrated systems. The Kaya-Berker model
presents an ideal benchmark for testing the method, since
the degree of frustration is controlled by the dilution param-
eter p. Moreover, the exact solutions in the limits p = 0
and p = 1 are known. Figure 2 illustrates that the results
are extraordinarily sensitive to the approximate methods.
The occurrence of unphysical solutions for 0 < p < 1, or
the lack of complete thermodynamic description, are the
main problems in all former analytical approaches. The
MC simulations are very useful; however, in the frustrated
systems they are difficult to perform in the low-temperature
region.

The present method, although relatively simple and based
on the approximate Gibbs energy, gives a physically correct
description of all thermodynamic quantities in a frustrated
system. It allows to eliminate the unphysical solutions which
result from the unmodified PA method. In particular, the
modified PA method gives a qualitatively correct phase
diagram as well as the exact energy and magnetization
of the ground state in the full (p,h) space (Sec. III). An
important finding is that the critical temperature tends to zero
when p → 1. This is contrary to HSMF and EFT methods,
however, in agreement with the tendency seen from the
MC and exact Wannier result [1]. It has also been shown
that the ordered phase for h = 0, characterized by mA =
−mB and mC = 0, corresponds to the minimum of modified
Gibbs potential, and such a phase is in agreement with MC
results.

In conclusion, the modified PA method gives a physically
correct description of the Kaya-Berker model. The results
are most accurate in low temperatures (T � Tc) and, in
particular, are exact in the ground state. Taking into account
the completeness of the method, the description of the model
is better than that obtained by any other analytical method
used to date. A price for this completeness is a less accurate
description for higher temperatures (T > Tc), consisting in
cutting off the paramagnetic maximum of specific heat and
flattening of entropy and correlation functions. However, such
a cutting off was necessary in order to obtain self-consistent
thermodynamics in all temperatures and to eliminate the
unphysical solutions. It should be noted that an example
of similar radical cutting off has already been known in
thermodynamics: the Maxwell construction for van der Waals

equation of state. The flattening of the entropy and correlation
function for Tc < T < Tf appears to be most spectacular for
a triangular lattice (p = 1), since Tc → 0 and the Tc − Tf

distance is the longest. This effect of flattening vanishes
gradually with increase of dilution.

From the analysis of the above results it becomes ob-
vious that the occurrence of the characteristic temperature,
kBTf/|J | = 0.721, for which such quantities as the correlation
functions, or entropy, present a kink, is an artifact of the
approximation. Fortunately, this effect occurs in the param-
agnetic region, far above the critical temperatures, and has no
destructive influence on the low-temperature behavior (i.e., in
the most interesting regime) and on the ground state where
the method is most accurate. It is also worth mentioning
that in the limit T → ∞, where entropy saturates, we again
obtain correct thermodynamic behavior of all calculated
quantities.

As a final remark, we hope that the presented approach can
also be useful for investigations of other spin systems with
geometrical frustrations.

APPENDIX: THE VARIATIONAL EQUATIONS FOR h = 0

In order to obtain the detailed form of variational equations
without external field (h = 0) one should note that the spon-
taneously ordered phase is characterized by mA = −mB ≡ m

and mC = 0. Then, Eqs. (31) reduce to ∂G/∂m = 0. For the
sake of simplicity we introduce a short notation:

R1 ≡ ρ++
AB = 1

4 + cAB, R2 ≡ ρ+−
AB = 1

4 + m − cAB,
(A1)

R3 ≡ ρ−+
AB = 1

4 − m − cAB, R4 ≡ ρ−−
AB = 1

4 + cAB,

and

A1 ≡ ρ++
AC = ρ−−

BC = 1
4 + 1

2m + (
1
2 + 2cAB

)
c′,

A2 ≡ ρ+−
AC = ρ−+

BC = 1
4 + 1

2m − (
1
2 + 2cAB

)
c′,

(A2)
A3 ≡ ρ−+

AC = ρ+−
BC = 1

4 − 1
2m − (

1
2 + 2cAB

)
c′,

A4 ≡ ρ−−
AC = ρ++

BC = 1
4 − 1

2m + (
1
2 + 2cAB

)
c′.

With the help of the above coefficients the equilibrium
condition ∂G/∂m = 0 takes the form of

ln

(
R2

R3

)
+ p ln

(
A1A2

A3A4

)
= 2

(
2

3
+ p

)
ln

(
1/2 + m

1/2 − m

)
.

(A3)

In turn, from Eq. (32) we obtain

|J |
kBT

(1 + 4pc′) = 4pc′ ln

(
A2A3

A1A4

)
+ ln

(
R2R3

R1R4

)
, (A4)

and Eq. (33) leads to the result

|J |
kBT

= ln

(
A2A3

A1A4

)
. (A5)

Equations (A3)–(A5) form a set of three variational equations
for m, cAB , and c′. However, Eq. (A5) should be used
only if |c′| � 1/4. If this is not the case, according to the
discussion presented in the theoretical section (Sec. II C), we
should assume c′ = −1/4 = const. Then, only two variational
equations [Eqs. (A3) and (A4)] are effective. It has been
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checked by the direct numerical calculation of the Gibbs
functional that such a choice of m, cAB , and c′ minimizes

the Gibbs energy in the physical range of these parameters,
whereas h = 0.
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